- •Радиолокационные системы
- •Радиолокационные системы
- •Введение
- •1. Общая характеристика радиосистем.
- •1.1. Основные системные принципы
- •Виды радиосистем
- •1.2 Начало радиолокации
- •1.3 Радиолокация как средство наблюдения
- •Диапазоны волн, используемые в радиолокации
- •Радиолокационное наблюдение как средство решения навигационных задач
- •Оптическая локация. Активная оптическая локация
- •Акустическая локация. Общие сведения.
- •Особенности гидроакустических колебаний
- •Гидролокация. Пассивная гидролокация – шумопеленгование
- •Активная гидролокация.
- •2.Физические основы определения местоположения воздушных судов.
- •2.1. Особенности распространения радиоволн
- •Дальность действия радиолинии с активным ответом
- •2.2.Дальность действия связи
- •2.3 Дальность действия активной рлс
- •3. Методы определения местоположения воздушных объектов.
- •3.1. Методы дальнометрии
- •Частотный метод
- •Частотная радиолокация многих целей
- •Импульсный метод
- •3.2. Методы измерения угловых координат.
- •3.2.1 Одноканальное измерение угловой координаты
- •3.2.2. Методы радиопеленгации
- •3.2.3. Моноимпульсные методы измерения угловых координат
- •Обзорные фазовые пеленгаторы
- •3.3. Методы измерения высоты полета
- •Метод максимума
- •Метод наклонного луча
- •Метод парциальных диаграмм.
- •Частотное сканирование луча
- •3.4. Радиотехнические методы определения местоположения объектов
- •4. Радиолокационные системы
- •Задачи решаемые в радиолокационных системах
- •4.1.Обнаружение
- •4.1.1.Параметрические обнаружители. Обнаружение детерминированного сигнала на фоне белого шума
- •Обнаружение сигнала со случайной начальной фазой
- •Обнаружение сигнала со случайными амплитудой и начальной фазой.
- •Оптимальное обнаружение когерентной пачки радиоимпульсов
- •Оптимальное обнаружение некогерентной пачки радиоимпульсов
- •4.1.2.Непараметрические обнаружители
- •Знаковые непараметрические обнаружители
- •Ранговые непараметрические обнаружители. Одноканальные ранговые обнаружители
- •Многоканальный ранговый обнаружитель
- •Стабилизация уровня ложных тревог
- •4.1.4.Принципы автоматического обнаружения воздушных объектов
- •4.2. Измерение координат и параметров движения
- •4.2.1.Измерение дальности
- •4.2.2.Измерение азимута
- •Разрешение сигналов
- •Разрешающая способность по дальности
- •Разрешающая способность по азимуту
- •Разрешающая способность по углу места
- •Разрешающая способность по высоте
- •Разрешающий объем рлс
- •Распознавание воздушных объектов
- •Распознавание по широкополосным сигналам
- •Распознавание по многочастотным сигналам
- •Распознавание по узкополосным сигналам
- •4.5. Помехозащищенность.
- •4.5.1. Защита от пассивных помех, отражений от «местных предметов» и метеообразований.
- •4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»
- •4.5.1.2.Статистические характеристики пассивных помех
- •4.5.1.3. Когерентность сигналов
- •Радиолокаторы с эквивалентной внутренней когерентностью
- •Радиолокаторы с внешней когерентностью
- •Радиолокаторы с истинной внутренней когерентностью
- •4.5.1.4.Селекция сигналов движущихся целей
- •Гребенчатые фильтры накопления
- •Гребенчатые фильтры подавления
- •Принцип когерентной оптимальной обработки на видеочастоте
- •4.5.1.5.Особенности систем сдц
- •Подавитель на промежуточной частоте
- •Череспериодное вычитание
- •4.5.1.6. Формирование карты местных предметов
- •4.5.1.7 Применение систем сдц для компенсации сигналов дискретных пассивных помех
- •4.5.1.8. Компенсация сигналов дискретных пассивных помех при корреляционном анализе
- •4.5.1.9. Цифровая система селекции движущихся целей
- •4.5.1.10. Дискретно-аналоговые системы сдц
- •Устранение слепых скоростей в компенсаторе на ппз
- •4.5.1.11. Многоканальная доплеровская фильтрация
- •4.5.1.12. Некоторые методы скоростной селекции
- •4.5.1.13 Основные характеристики систем сдц Коэффициент подавления пассивной помехи
- •Коэффициент подпомеховой видимости (коэффициент улучшения)
- •4.5.2. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •4.5.2.1 Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •4.5.2.2. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •4.5.2.3. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •4.5.2.4. Нормирование уровня импульсных помех при обработке сложных сигналов
- •4.5.2.5.Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •4.5.3.Активные маскирующие помехи и принципы защиты от них
- •4.6. Виды радиосигналов принимаемых в рлс
- •4.6.1. Характеристики сигналов рлс
- •4.6.2.Функция неопределенности прямоугольного радиоимпульса
- •4.6.3. Широкополосные сигналы
- •4.6.4. Функция неопределенности фазокодоманипулированного сигнала
- •4.6.5.Функция неопределенности сигнала с линейной частотой модуляции
- •4.6.6.Обработка фкм – сигнала
- •4.6.7.Пачка когерентных радиоимпульсов
- •4.6.8. Пачка радиоимпульсов со случайными начальными фазами
- •4.7. Активные системы радиолокации
- •4.7.1. Активные системы с пассивным ответом (первичные рлс)
- •4.7.2. Структура первичной рлс
- •Первичные средства радиолокации
- •4.7.3. Активные системы с активным ответом (вторичные рлс)
- •Структура и принцип работы систем вторичной радиолокации
- •Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •Кодирование запросных и ответных сигналов. Методы кодирования запросных и ответных сигналов
- •Структура запросных сигналов
- •Структура ответных сигналов. Ответный сигнал режима увд
- •Ответный сигнал режима rbs
- •4.7.4. Дискретно–адресная система вторичной радиолокации
- •4.7.5. Система радиолокационного опознавания
- •Классификация систем радиолокационного опознавания
- •Методы кодирования и декодирования сигналов
- •Защита от влияния боковых лепестков диаграммы направленности антенны. Принцип защиты ответчиков от запросных сигналов, излучаемых запросчиками в боковых направлениях
- •5. Пассивная радиолокация
- •6. Радиолокационные системы с синтезированной апертурой
- •7. Предупреждение столкновений воздушных судов
- •8.Автоматическое зависимое наблюдение
- •9.Загоризонтная радиолокация.
- •9.1.Историческая справка
- •9.2.Особенности загоризонтных радиолокаторов
- •9.3.Уравнение радиолокации
- •9.4.Потенциал радиолокационной станции
- •9.5.Методы защиты рлс от радиопомех
- •Адаптация к помеховым условиям путем выбора канала с минимальным уровнем активных помех
- •Адаптивная пространственная фильтрация активных помех
- •9.6.Принципы построения загоризонтных рлс
- •10. Пространственно-временная обработка
- •Пространственно-временная обработка
- •Объединение во времени результатов первичной обработки
- •Статистическая модель движения объекта.
- •Алгоритм вторичной обработки радиолокационной информации
- •Пространственно-некогерентное объединение обнаруженных отметок и единичных замеров при централизованной обработке.
- •Пространственно-временная обработка в бортовых рлс
- •11. Особенности эксплуатации радиолокационной системы
- •11.1. Исторические аспекты теории надежности.
- •11.2.Система качества
- •11.3. Эксплуатация и ремонт технических систем
- •Надежность технических систем при эксплуатации.
- •Эксплуатационные методы обеспечения надежности.
- •Система технического обслуживания и ремонта.
- •Методика обнаружения неисправностей
- •Метод последовательных приближений
- •Способ контрольных переключений и регулировок
- •Способ промежуточных измерений
- •Способ замены
- •Способ внешнего осмотра
- •Порядок испытаний при обнаружении неисправностей, возникающих после включения системы.
- •Литература
- •Список сокращений
3.2.2. Методы радиопеленгации
Измерение угловых координат основано на определении угла прихода радиоволн, излученных или отраженных объектом. Для этого используют радиопеленгаторы. Важной характеристикой радиопеленгатора является его пеленгационная характеристика u(a) –зависимость нормированного выходного напряжения приемника от направления прихода радиоволн. В зависимости от того, какой параметр радиосигнала оказывает основное влияние на формирование пеленгационной характеристики, методы углометрии (пеленгации) подразделяют на амплитудные, фазовые, частотные и комбинированные (амплитудно-фазовые). Основными из этих методов, нашедшими распространение на практике, являются первые два.
Амплитудные методы. Амплитудные методы пеленгации основаны на использовании направленных свойств антенн. Если используются направленные свойства только приемной антенны, ДН которой равна fпр(a), то пеленгационная характеристика радиопеленгатора u(a)=к×fпр(a), где к – коэффициент пропорциональности.
При использовании направленных свойств как приемной, так и передающей антенны u(a)=к·fпр(a)· fпер(a), где fпер(a) – ДН передающей антенны. Если на передачу и прием работает одна антенна, то fпер(a) = fпр(a) = f(a), при этом u(a)=к·f 2(a).
Среди амплитудных методов пеленгации различают методы максимума, минимума и сравнения. Пеленгация методом максимума (рис. 3.19, а) осуществляется путем совмещения направления максимума пеленгационной характеристики a с направлением на пеленгуемый объект a0 в результате плавного вращения ДН антенны; пеленг отсчитывается в тот момент, когда напряжение на выходе приемника становится максимальным. Достоинства метода максимума: простота технической реализации, получение наибольшего отношения сигнал-шум в момент отсчета пеленга. Недостатки метода: низкая пеленгационная чувствительность и, как следствие, низкая точность пеленгации.
Пеленгационная чувствительность – это способность радиопеленгатора измерять напряжение на выходе приемника при изменении положения ДН антенны относительно направления на объект. Чем больше изменение напряжения при заданном изменении угла, тем выше пеленгационная чувствительность. Количественной мерой пеленгационной чувствительности является крутизна пеленгационной характеристики
.
Если Δu – минимальное изменение выходного напряжения приемника, которое может зафиксировать измеритель, то абсолютная погрешность измерения угловой координаты Δa ≈ Δu/KП. Таким образом, чем больше крутизна пеленгационной характеристики, тем выше пеленгационная чувствительность и тем меньше погрешность измерения угла.
Так как максимум ДН антенны обычно «тупой», то пеленгационная чувствительность при пеленгации методом максимума мала и, следовательно, погрешность измерения невысока.
Пеленгация методом минимума (рис. 3.19, б) осуществляется путем плавного вращения ДН с резким провалом. Угол отсчитывается в тот момент, когда направление минимума пеленгационной характеристики a совпадает с направлением на объект a0, при этом напряжение на выходе приемника минимально. Крутизна пеленгационной характеристики в этом случае выше, чем при методе максимума, поэтому выше и точность пеленгации. Однако амплитуда принимаемого сигнала вблизи направления на объект мала и, следовательно, использование метода минимума в активной радиолокации нецелесообразно. Этот метод применяется главным образом в радионавигации при пеленгации источников мощного собственного излучения.
При пеленгации методом сравнения (рис. 3.19, в) угол определяется по соотношению амплитуд двух принимаемых сигналов, соответствующих двум пересекающимся диаграммам направленности f1(a) и f2(a). Приемник в этом случае двухканальный, причем напряжения на выходе каналов пропорциональны значениям f1(a0) и f2(a0):
.
Сравнивая эти сигналы, например путем деления, находим
.
Измерив отношение s и решив уравнение относительно a0, найдем искомый угол. Достоинством метода сравнения является возможность быстрого определения направления на объект (в течение одного импульса) в пределах сравнительно широкого сектора при неподвижных антеннах. Однако точность измерения может иногда оказаться низкой в зависимости от вида и взаимного положения ДН антенн и угла прихода радиоволн.
В том случае, когда отношение сигналов s1/s2 стремятся сделать равным единице, приходим к равносигнальному методу пеленгации. При этом методе ДН антенной системы поворачивается до тех пор, пока объект не окажется на равносигнальном направлении РСН (см. правый рис. 3.19, в), когда s = s1/s2 = 1. Достоинство равносигнального метода – сравнительно высокая точность пеленгации, так как при измерении используется та часть ДН, которая обладает большой крутизной. Данный метод применяется при автоматическом слежении по угловым координатам за движущимся объектом. В этом случае удобнее формировать не отношение сигналов, а их разность s = s1–s2. Система управления поворачивает антенну (или ДН при неподвижной антенне) в ту или иную сторону (в зависимости от знака величины s), стремясь свести рассогласование s к нулю. При этом равносигнальное направление будет отслеживать изменение направления на объект. В системах посадки равносигнальные направления задают направления курса и глиссады.
Методы сравнения, в частности равносигнальный, используют в многоканальных (моноимпульсных) радиопеленгаторах и в одноканальных. В первом случае благодаря многоканальности приемной системы сравнение сигналов происходит в один и тот же момент времени. Во втором случае нужно периодически менять положение ДН антенны в пространстве, при этом сравниваются между собой сигналы, принятые в разные моменты времени при различных положениях ДН. Одноканальные радиопеленгаторы проще многоканальных, однако менее помехозащищены и обеспечивают меньшую точность.
Фазовый метод. Фазовый метод пеленгации основан на измерении разности фаз электромагнитных колебаний, принятых на две разнесенные антенны. Пусть в точках А и В, расстояние между которыми d (рис. 3.20), расположены приемные антенны. Разность фаз принимаемых колебаний φр = (2π/λ)(RA – RB), где RA, RB — расстояния от антенн до объекта. При RA >> d, RB >> d имеем
, (3.11)
где a – угол между нормалью к базе и направлением на объект.
Измерив разность фаз φр, найдем
. (3.12)
При пеленгации объекта не на плоскости, а в пространстве, когда требуется определять две угловые координаты, нужна вторая пара антенн, база которых пересекается с базой первой пары.
В качестве фазочувствительного элемента можно использовать фазовый детектор. Напряжение на его выходе пропорционально косинусу разности фаз:
s = к· cos φр. Пеленгационная характеристика u(a) = cos[(2π/λ)d sina].
При малых углах sina ≈ a, поэтому u(a) = cos[(2π/λ)da] (1 на рис. 3.21). Так как в окрестности a = 0 крутизна пеленгационной характеристики мала, то и точность пеленгации будет низкой. Кроме того, поскольку рассматриваемая пеленгационная характеристика является четной функцией угла, то его определение будет двузначным, т.е. нельзя будет определить
направление смещения объекта от перпендикуляра к базе.
Эти недостатки устраняются, если ввести в один из приемных каналов после резонансного усилителя РУ фазовращатель ФВ на π/2 (рис. 3.22). Напряжение на выходе фазового детектора ФД измеряется вольтметром В. Благодаря смещению фазы сигнала в одном из каналов на π/2 пеленгационная характеристика становится нечетной функцией (2 на рис. 3.21)
, (3.13)
при этом ее крутизна KП = 2πd/λ. Как видим, пеленгационная чувствительность, следовательно, точность пеленгации растет с увеличением отношения d/λ. Однако при этом будет уменьшаться диапазон однозначного измерения угла Δamax. Действительно, поскольку для однозначного измерения разности фаз с помощью фазового детектора необходимо, чтобы φ ≤ π, а при малых a согласно φр ≈ 2πda/λ, то Δamax = λ/2d.
Рис.3.22 Структурная схема фазового пеленгатора
Для обеспечения высокой точности и в то же время однозначности измерений можно применить многошкальный метод (подобно фазовой дальнометрии). При двухшкальном методе вводят третью антенну и создают большую и малую базы. Пара антенн с малой базой обеспечивает грубое, но однозначное измерение угла (в диапазоне Δamax). Антенны с большой базой дают более точный отсчет.
Неоднозначность пеленгации можно устранить также, применив антенны с достаточно узкими ДН: их ширина aа не должна превышать диапазон однозначной пеленгации, т.е. aа ≤ Δamax. Кроме того, остронаправленные антенны обеспечивают разрешение объектов по угловым координатам.