Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция №01.doc
Скачиваний:
3
Добавлен:
15.11.2019
Размер:
508.93 Кб
Скачать
      1. Теплопроводность. Тепловой поток. Закон Фурье

Теплопроводность представляет собой процесс распространения энергии между частицами тела (молекулами, атомами и т. п.), находящимися друг с другом в соприкосновении и имеющими различные температуры.

Теплопроводность обусловлена движением микрочастиц вещества. При этом в газах перенос энергии осуществляется путем диффузии молекул и атомов, а в жидкостях и твердых телах-диэлектриках – путем упругих волн. В металлах перенос энергии в основном осуществляется путем диффузии свободных электронов, роль упругих колебаний кристаллической решетки здесь второстепенна. Следует указать, что в жидкостях и газах чистая теплопроводность может быть реализована при выполнении условий, исключающих перенос теплоты конвекцией.

Всякое физическое явление в общем случае сопровождается изменением в пространстве и времени существенных для данного явления физических величин. Процесс теплопроводности, как и другие виды теплообмена, может иметь место только при условии, что в различных точках тела (или системы тел) температура неодинакова. В общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры как в пространстве, так и во времени.

Аналитическая теория теплопроводности игнорирует молекулярное строение вещества: она рассматривает вещество не как совокупность отдельных дискретных частиц, а как сплошную среду – континуум. Такое модельное представление вещества может быть принято при решении задач распространения тепла, если размеры дифференциальных объемов достаточно велики по сравнению с размерами молекул и расстояниями между ними. Во всех расчетах и примерах тело предполагается однородным и изотропным.

Необходимым условием распространения теплоты является неравномерность распределения температуры в рассматриваемой среде. Таким образом, для передачи теплоты теплопроводностью необходимо неравенство нулю температурного градиента (7) в различных точках тела.

Теплота самопроизвольно переносится в сторону убывания температуры. Количество теплоты, переносимое через какую-либо изотермическую поверхность в единицу времени, называется тепловым потоком , . Тепловой поток, отнесенный в единице поверхности тела, называют поверхностной плотностью теплового потока (или просто плотностью теплового потока) , .

Количество теплоты, проходящее в единицу времени и отнесенное к единице площади называется плотностью теплового потока, соответствующий вектор определяется соотношением:

(9)

где – количество тепла, проходящего в единицу времени, или скорость теплового потока;

– площадь изотермической поверхности, .

Следовательно, вектор называется вектором теплового потока, направление которого противоположно температурному градиенту, т. к. тепловая энергия самостоятельно распространяется всегда только в сторону убывания температуры (по рис. 1 оба вектора направлены по нормали к изотермической поверхности, но в противоположные стороны и знак минус в формуле учитывает эти векторные расхождения).

Исследуя явления теплопроводности в твердых телах, французский математик и физик Жан Батист Фурье установил, что тепловая мощность , , передаваемая теплопроводностью, пропорциональна градиенту температуры и площади сечения, перпендикулярного направлению теплового потока.

(10)

или

(11)

где – коэффициент пропорциональности, .

Закон Фурье связывает перенос тепла внутри тела с температурным состоянием в непосредственной близости от рассматриваемого места.

Множитель пропорциональности , входящий в это уравнение, характеризует способность вещества, из которого состоит рассматриваемое тело, проводить теплоту и называется коэффициентом теплопроводности, или просто теплопроводностью. Из уравнения (11), которое является математическим выражением основного закона распространения теплоты путем теплопроводности (закон Фурье), следует, что теплопроводность определяет мощность теплового потока, проходящего через 1 м2 поверхности при градиенте температуры 1 оС/м.

Опытным путем установлено, что коэффициент теплопроводности зависит от свойств вещества (его плотности, структуры, влажности и т. п.) и параметров состояния (давления, температуры). Зависимость от температуры для большинства материалов имеет линейный характер.

Тепловой поток , , через произвольно ориентированную элементарную площадку равен скалярному произведению вектора на вектор элементарной площадки , а полный тепловой поток через всю поверхность определяется интегрированием этого произведения по поверхности :

(12)

Количество теплоты , , прошедшее за время через произвольную поверхность конечных размеров, определяют из уравнения:

(13)

15