Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AZBUKA.DOC
Скачиваний:
10
Добавлен:
12.11.2019
Размер:
2.01 Mб
Скачать
    1. Гидроксиды – основные (основания), амфотерные, кислотные (оксокислоты).

Гидроксидами называются сложные вещества, содержащие груп­пи­ровку OH-, кото­рая связана через атом кислорода одинарной хими­чес­кой связью с различными хими­чес­кими элементами. Подобно окси­дам, в зависимости от ха­рактера химической свя­зи Э-ОН, гид­рок­си­ды подраз­де­ляют­ся на основные (основания) (NaOH, Tl(OH), Cu(OH), Mg(OH)2, Ba(OH)2, Cr(OH)2) с преиму­щес­т­вен­но ионной связью, амфотерные (I(OH), Be(OH)2, B(OH)3), Zn(OH)2, Fe(OH)3, Al(OH)3) с ион­но-ко­ва­лент­ным типом свя­зи и кис­лот­ные (кислородсодержащие или оксокислоты) (NO2(OH)HNO3, PO(OH)3H3PO4, SO2(OH)2H2SO4, Te(OH)6H6TeO6), ClO3(OH)HClO4, MnO2(OH)2H2MnO4, MnO3(OH)HMnO4) с преиму­щес­т­­вен­­но ковалент­ной связью.

В соответствии с преимущественно ионным харак­те­ром химической свя­зи Э-ОН ос­новные гидроксиды (основания) при растворении в воде диссоциируют с обра­зо­ва­ни­ем гид­рок­сид-ионов и катионов, причем, в зависимости от эф­фек­тив­нос­ти (степени) дис­со­циа­ции раз­личают сильные ос­но­ва­ния (NaOH, Ba(OH)2), дис­со­ци­ирующие практи­чес­ки на­це­ло, основания средней силы (Tl(OH), Mg(OH)2, Cr(OH)2) и сла­бые ос­но­вания (Сu(OH), Fe(OH)2), дис­со­циация которых протекает частично:

NaOH  Na+ + OH-, Fe(OH)2  Fe2+ + 2OH-

Кислотные гидроксиды (оксокислоты) в водных растворах диссоциируют с об­разо­ва­нием ионов гидроксония H3O+, которые сокращенно часто изображают в виде ка­ти­о­на водорода H+. Подобно основаниям, кислотные гидроксиды по сте­пени их дис­со­циации подразделяют на сильные (HNO3, HClO4), средней силы (HAsO3, HClO2) и слабые (HClO, H5IO6) кислоты:

HNO3 + H2O  H3O+ + NO3- (HNO3  H+ + NO3-)

HClO + H2O H3O+ + ClO- (HClO  H+ + ClO-)

Kислоты располагаются в порядке убывания их силы (активности) в так называемом ряду активности кислот:

Сильные Средней силы

HI>HBr>HClO4>HCl>H2SO4>HMnO4>HNO3│>H2Cr2O7>H2CrO4>H2SO3>H3PO4>HF│

Слабые

> HNO2 > HCOOH > CH3COOH > H2CO3 > H2S > HClO > HCN > H3BO3 > H2SiO3

Амфотерные гидроксиды в основном плохо растворимы в воде и проявляют как слабые основные, так и кислотные свойс­т­ва:

OH- + I+  I(OH), HIO  IO- + H+

2OH- + Zn2+ Zn(OH)2 + 2H2O  [Zn(OH)4]2- + 2H+

Образование в процессе диссоциации гидроксидов катионов гидроксония, или гид­рок­сид-ионов определяет важнейшее химическое свойство гидроксидов – реакцию нейтрализации, приводящую к образованию воды и соли при взаи­мо­действии осно­ваний и кислот:

NaOH (Na + OH-) + HNO3 (H+ + NO3-) = NaNO3 (Na+ + NO3-) + H2O

OH- + H+ = H2O

Обладая кислотно-основной двойственностью, амфотерные гидроксиды в ре­акциях нейтрализации могут выступать как в качестве основания, так и кис­ло­ты:

I(OH) + HClO4 = IClO4 + H2O

HIO + NaOH = NaIO + H2O

Подобно амфотерным оксидам металлов, взаимодействие с основаниями их гид­рок­си­дов в водных растворах приводит к образованию солей, содержащих не оксо-, а гид­роксокомплексные анионы:

Al(OH)3 + 3NaOH = Na3[Al(OH)6]

Образование же оксосолей происходит при взаимодействии амфотерных гид­рок­си­дов со щелочными расплавами:

Al(OH)3 + NaOH (расплав) = NaAlO2 + 2Н2О

В зависимости от числа OH- группировок, содержащихся в гидроксиде, кис­лот­ные гидроксиды подразделяют на одно- (HNO3), двух- (H2SO4), трех- (H3PO4) и т.д. основ­ные кислоты, а основные гидроксиды – на одно- (NaOH), двух- (Ca(OH)2), трех- (Al(OH)3) кислотные основания.

По растворимости основания делятся на растворимые и нерастворимые. Основания щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов являются растворимыми в воде и называются щелочами.

Систематические названия основных и амфотерных гидроксидов обра­зу­ют­ся из сло­ва гидроксид и русского названия элемента в родительном падеже с указанием (для элементов с пе­ре­менной степенью окисления) римскими циф­ра­ми в круглых скоб­ках степени окисления элемента:

NaOH – гид­рок­сид натрия, Ca(OH)2 -гид­роксид кальция,

TlOH - гидроксид таллия (I), Fe(OH)3 –гидрок­сид железа (III).

Тривиальные названия некото­рых гидроксидов, в ос­нов­ном используемые в технической литературе, приве­де­ны в приложении 2.

Следует отметить специфику названия водного раствора аммиака, частичная дис­со­циация которого приводит к образованию в растворе гидроксид-ионов и прояв­ле­нию слабых основных свойств. Ранее полагали, что в водном растворе аммиак обра­зу­ет гидроксид аммония состава NH4OH. Однако в настоящее вре­мя установлено, что основной формой существования аммиака в водном раст­во­­ре является его гидрати­ро­ван­ные молекулы, которые условно записывают в ви­де NH3H2O и называют гидрат аммиака. Подобно аммиаку, водные раст­во­ры гидразина N2H4 и гидроксил­а­ми­на NH2OH также в основном содержат гид­ра­тированные молекулы, которые называют: N2H4H2O – гидрат гидразина и NH2OHH2O – гидрат гидроксиламина.

У пражнения:

  1. Приведите систематические названия гидрок­си­дов, классифицируйте их по кислотности и растворимости: LiOH, Sr(OH)2, Cu(OH)2, Cd(OH)2, Al(OH)3, Cr(OH)3. Приведите формулы соответствующих им оксидов.

  2. Приведите молекулярные и графические формулы гидроксидов: гидроксид железа (III), гидроксид берилия, гидроксид лития, гидроксид хрома (III), гидроксид магния. Какие из данных гидроксидов будут взаимодействовать а) с гидроксидом калия, б) с оксидом бария, в) с соляной кислотой? Написать уравнения реакций.

  3. Приведите реакции, демонстрирующие кислотно-основные свойства гид­рок­си­дов бария, цинка, калия и хрома (III), а также методы их получения.

Систематические названия кислотных гидроксидов (оксокислот) строятся по пра­ви­лам номенк­ла­туры для комплексных соединений, которые будут рассмот­ре­ны ниже­. В тоже время, в отечественной практике широко ис­пользуются тради­ци­онные названия распространенных оксокислот – уголь­ная, серная, фосфорная и т.д. Их применение допустимо, но только для ограни­чен­ного круга действительно наи­бо­лее распространенных кислот, а в осталь­ных случаях следует применять систе­ма­ти­чес­кие названия.

Традиционное название оксокислоты состоит из двух слов: названия кис­ло­ты, вы­ра­женного прилагательным и группового слова кислота. Название кис­ло­ты обра­зу­ет­ся из русского названия кислотообразующего элемента (если в наз­вании элемента есть окончание «й», «о», «а», то оно опускается) с добав­ле­ни­ем, в зависимости от сте­пени окис­ле­ния элемента, различных окончаний (табл. 1.3, 1.4). По традиции H2CO3 на­зывают уголь­ной, а не углеродной кис­ло­той.

В соответствии с менделеевским правилом «четности» для кислотообразую­щих p-эле­ментов IV-VI группы наиболее характерны степени окисления соот­вет­ствующие номеру группы N, а также N-2 и N-4.

Как видно из табл. 1.2, для высшей степени окис­ления элемента N название кислоты образуется добав­ле­ни­ем к названию бол­ь­шин­­ства элементов окончаний: -ная, -евая и –овая. Для мышьяка и сурьмы по пра­ви­лам рус­ско­го языка используются окончания -янная и –яная. Название кислот со сте­пенью окисления элемента N-2 образу­ет­ся в основном образуется с помощью окон­­чания –истая (для серы, мышьяка и сурьмы: –нистая, -овистая и – янистая). Кис­ло­ты, образованные элементами с наиболее низкими степенями окисления N-4, име­ют окончания –новатистая. Для фосфористой H2PHO3 и фосфорноватистой HPH2O2 кис­лот, характе­ри­зу­ю­щих­ся специфическими строением в связи с наличием Р-Н связей, ре­комен­ду­ет­ся использовать специальные названия – фосфоновая и фосфиновая.

В некоторых случаях происходит образование двух форм кислот, в которых кислотообразующий элемент находится в одинаковой степени окисления. К названию кислоты с бóльшим количеством гидроксо-групп прибавляется приставка орто-, а к названию кислоты с мéньшим числом гидроксо-групп прибавляется приставка мета-.

Таблица 3. Традиционные названия оксокислот р-элементов III-VI группы.

N

Эz+

Окончание

Название кислоты

Высшая степень окисления элемента N

III

B3+

-ная

H3BO3 ортоборная, HBO2 метаборная,H2B4O7 тетраборная

Al3+

-евая

H3AlO3 ортоалюминиевая, HАlO2 метаалюминевая

IV

C4+

-ная

H2CO3 угольная

Si4+

-евая

H4SiO4 ортокремниевая, H2SiO3 метакремниевая

Ge4+

-евая

H4GeO4 ортогерманиевая, H2GeO3 метагерманиевая

Sn4+

-янная

H4SnO4 ортооловянная, H2SnO3 метаоловянная

V

N5+

-ная

HNO3 азотная

P5+

-ная

H3PO4 ортофосфорная, HPO3 метафосфорная,

H4P2O7 дифосфорная, H5P3O10 трифосфорная

As5+

-овая

H3AsO4 ортомышьяковая, HasO3 метамышьяковая

Sb5+

ная

H3SbO4 ортосурьмяная, HSbO3 метасурьмяная

VI

S6+

-ная

H2SO4 серная, H2S2O7 дисерная

Se6+

-овая

H2SeO4 селеновая

Te6+

-овая

H6TeO6 ортотеллуровая, H2TeO4 метателлуровая

Степень окисления элемента N-2

V

N3+

-истая

HNO2 азотистая

P3+

-истая

H2PHO3 фосфористая (фосфоновая)

As3+

-овистая

H3AsO3 ортомышьяковистая, HasO2 метамышьяковистая

Sb3+

-янистая

H3SbO3 ортосурьмянистая, HSbO2 метасурьмянистая

VI

S4+

-нистая

H2SO3 сернистая

Se4+

-истая

H2SeO3 селенистая

Te4+

-истая

H2TeO3 теллуристая

Степень окисления элемента N-4

V

N+

-новатистая

H2N2O2 азотноватистая

P+

-новатистая

HPH2O2 фосфорноватистая (фосфиновая)

Традиционные названия оксокислот галогенов (табл. 4) в высшей степени окис­ле­ния N, также образуются добавлением к названию элемента окончания –ная. Одна­ко, для оксо­кис­лот галогенов в степени окисления N-2 ис­поль­зуются окончания –новатая, а окон­ча­ние –истая применяется для названия кислот со степенью окис­ле­ния галогенов N-4. Оксокислоты галогенов с наиболее низки­ми степенями окисления N-6 имеют окон­ча­ния –новатистая.

Несмотря на то, что характерные степени окисления переходных d-элемен­тов не подчиняются менделеевскому правилу «четности», высшая степень окис­­ления d-металлов, об­ра­­зующих побочные подгруппы III-VII группы, также определяются но­мером группы N и традиционные названия их оксокислот об­ра­зу­ются подобно р-эле­ментам c по­мощью окончаний – овая, -евая: H4TiO4 ти­та­новая, H3VO4 ванадиевая, H2CrO4 хро­мо­вая, H2Cr2O7 дихромовая, HMnO4 мар­ганцевая. Для оксокислот d-элементов в более низких степенях окис­ления металла рекомендуется ис­пользовать систематические названия, образо­ван­ные по прави­лам для комп­лек­сных соединений.

Таблица 4. Традиционные названия оксокислот р-элементов VII группы.

N

Эz+

Окончание

Название кислоты

Высшая степень окисления элемента N

VII

Cl7+

-ная

HClO4 хлорная

Br7+

HBrO4 бромная

I7+

H5IO6 ортоиодная, HIO4 метаиодная

Степень окисления элемента N-2

VII

Cl5+

-новатая

HClO3 хлорноватая

Br5+

HBrO3 бромноватая

I5+

HIO3 иодноватая

Степень окисления элемента N-4

VII

Cl3+

-истая

HClO2 хлористая

Br3+

HBrO2 бромистая

I3+

HIO2 иодистая

Степень окисления элемента N-6

VII

Cl+

-оватистая

HClO хлорноватистая

Br+

HBrO бромноватистая

I+

HIO иодноватистая

У пражнения:

  1. Приведите традиционные названия и графические формулы сле­ду­ю­щих ок­со­кис­лот: H2SO4, H2S2O7, HNO3, HNO2, H3PO4, HPO3, H4P2O7, H2PHO3, HPH2O2, HClO, HClO2, HClO3, HClO4, H5IO6, HMnO4, H2Cr2O7.

  2. Приведите молекулярные и графические формулы следующих оксокислот: бромноватистая, иодная, селенистая, ортотеллуровая, метамышьяковая, ди­крем­ниевая, метаоловянная, фосфористая (фосфоновая), фосфорноватистая (фос­финовая), пентафосфорная, метаванадиевая.

  3. Приведите реакции, демонстрирующие общие методы получения оксо­кис­лот. Приведите примеры оксидов элементов в промежуточных степенях окисления, которые при взаимодействии с водой образуют две кислоты.

  4. Напишите реакции дегидратации следующих кислот: H3BO3, HMnO4, H2S2O7, HNO2, H3PO4, H2WO4, H3AsO3, H2CrO4. Приведите названия кислот и получающихся кислотных оксидов (ангидридов кислот).

  5. Какие из перечисленных веществ будут взаимодействовать с соляной кислотой: Zn, CO, Mg(OH)2, CaCO3, Cu, N2O5, Al(OH)3, Na2SiO3, BaO? Напишите уравнения реакций.

  6. Напишите реакции, демонстрирующие кислотный характер следующих оксидов, назовите соответствующие им кислоты: P4O10, SeO3, N2O3, NO2, SO2, As2O5.

  7. Приведите реакции взаимного перехода между фосфорными кисло­та­ми: H3PO4HPO3, H3PO4H4P2O7, HPO3H3PO4, HPO3H4P2O7, H4P2O7HPO3, H4P2O7H3PO4.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]