
- •Глава 1. Физические основы подтягиваний на перекладине. 4
- •Глава 2. Биологические основы подтягиваний на перекладине. 43
- •Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании. 135
- •Введение
- •Глава 1. Физические основы подтягиваний на перекладине.
- •1.1 Фазы цикла подтягиваний.
- •1.2 Биомеханика подтягиваний.
- •1.2.1 Кинематические характеристики подтягивания.
- •1.2.1.1 Пространственные характеристики.
- •1.2.1.2 Временны́е характеристики.
- •1.2.1.3 Пространственно-временны́е характеристики
- •1.2.2 Динамические характеристики подтягивания.
- •1.2.2.1 Двигательный аппарат человека.
- •1.2.2.2 Масса тела, сила тяжести, вес тела.
- •1.2.2.3 О влиянии веса и роста спортсмена на результат в подтягивании на перекладине
- •1.2.2.4 Сила упругости перекладины.
- •1.2.2.5 Разгибающий момент.
- •1.2.2.6 Сила трения
- •1.2.3 Энергетические характеристики подтягивания.
- •1.2.3.1 Механическая работа мышц в фазе подъема туловища.
- •1.2.3.2 Механическая работа мышц в фазе опускания туловища.
- •1.2.3.3 Внутренняя энергия.
- •1.2.3.4 Мощность работы.
- •Глава 2. Биологические основы подтягиваний на перекладине.
- •2.1 Формы и типы мышечного сокращения.
- •2.2 Режимы работы мышц.
- •Взаимосвязь между формами и типами сокращения мышц и режимами их работы.
- •2.3 Биоэнергетика подтягиваний.
- •2.3.1 Пути ресинтеза атф
- •2.3.1.1 Креатинфосфатный механизм ресинтеза атф.
- •2.3.1.2 Гликолитическии механизм ресинтеза атф.
- •2.2.1.3 Аэробный механизм ресинтеза атф.
- •2.3.2 Энергообеспечение мышечной деятельности.
- •2.4 Характеристические кривые мышц.
- •2.4.1 Взаимосвязь между нагрузкой и скоростью мышечного сокращения.
- •2.4.2 Зависимость сила - скорость
- •2.4.3 Зависимость предельного времени статической работы от абсолютной и относительной мышечной силы.
- •2.4.4 Зависимость предельной динамической работы от частоты движений.
- •2.5 Структура и типы мышечных волокон
- •2.5.1 Двигательные единицы.
- •2.5.2 Регуляция мышечного напряжения.
- •2.5.3 Быстрые и медленные мышечные волокна.
- •2.5.4 Окислительные и гликолитические мышечные волокна.
- •2.5.5 Состав мышц.
- •2.6 Развитие процессов утомления и восстановления при выполнении подтягиваний.
- •2.7 Пути увеличения результата в подтягивании
- •Список литературы
- •Теория и методика подтягиваний на перекладине.
- •Часть 2.
- •Глава 3. Характеристика тренировочной нагрузки.
- •Глава 4. Отдых и восстановление.
- •Глава 5. Направленность тренировочной нагрузки
- •Глава 6. Развитие статической силовой выносливости мышц предплечья.
- •6.1 Энергообеспечение при статическом напряжении мышц предплечья.
- •Введение. Краткий обзор различных систем тренировок по подтягиванию на перекладине
- •Глава 3. Характеристика тренировочной нагрузки.
- •3.1 Внешняя и внутренняя стороны нагрузки
- •3.2 Параметры нагрузки.
- •3.2.1 Объём нагрузки.
- •3.2.2 Интенсивность нагрузки.
- •3.2.3 Длительность выполнения нагрузки
- •3.2.4 Величина нагрузки.
- •3.2.6 Способы изменения величины нагрузки.
- •3.2.6.1 Некоторые способы создания отягощений.
- •3.2.6.2 Некоторые способы уменьшения величины нагрузки.
- •3.3 Классификация нагрузок по величине.
- •Глава 4. Отдых и восстановление.
- •4.1 Изменение работоспособности в результате воздействия нагрузки.
- •4.1.1 Срочное восстановление
- •4.1.2 Отставленное восстановление
- •4.2 Продолжительность интервалов отдыха между подходами.
- •4.3 Характер отдыха между подходами.
- •Глава 5. Направленность тренировочной нагрузки
- •5.1 Направленность нагрузки.
- •5.2 Целенаправленный подход при планировании тренировочного процесса в подтягивании на перекладине.
- •Глава 6. Развитие статической силовой выносливости мышц предплечья.
- •6.1.1 Увеличение ёмкости креатинфосфатного механизма.
- •6.1.2 Снижение негативных последствий гликолиза.
- •6.1.3 Источники энергии для аэробного ресинтеза атф.
- •6.1.4 Доставка кислорода в работающие мышцы.
- •6.1.4.1 Развитие капиллярной сети.
- •6.1.4.2 Создание условий для эффективного кровообращения.
- •6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах.
- •6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу атф.
- •6.1.5.2 Увеличение количества и размера митохондрий.
- •6.1.6 Уменьшение времени развёртывания механизма аэробного ресинтеза атф.
- •6.1.7 Предполагаемые изменения в схеме энергопродукции.
- •6.2 Преимущественная направленность тренировочной нагрузки.
- •6.3 Мышцы-сгибатели, их строение и функции.
- •6.4 Характеристика развивающей нагрузки.
- •6.4.1 Общие требования.
- •6.4.2 Выбор исходной нагрузки
- •6.4.3 Целевые параметры нагрузки.
- •6.4.4 Варианты изменения параметров нагрузки.
- •6.4.5 Дополнительные условия проведения развивающих тренировок.
- •6.5 Сочетание нагрузок при развитии статической силовой выносливости.
- •6.5.1 Варианты развивающей нагрузки.
- •6.5.2 Сочетание нагрузок различной величины и направленности.
- •6.6 Краткое описание тренировочного процесса.
- •Динамика нагрузки.
- •Условия прекращения тренировок.
- •Средства контроля.
- •Сочетание нагрузок различного характера.
- •6.7 Практический пример
- •Список литературы
- •17 Гальперин с.И. Физиология человека и животных. Учебное пособие для ун-тов и пед ин-тов. М., «Высш. Школа», 1977
- •А.Кожуркин Теория и методика подтягиваний на перекладине. Часть 3. Содержание
- •Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании.
- •7.1 Мышцы, производящие подъём/опускание туловища.
- •7.2 Строение мышечных волокон и механизм мышечных сокращений
- •7.2.1 Строение и химический состав скелетных мышц
- •7.2.1.1 Митохондрии
- •7.2.1.2 Миофибриллы
- •7.2.2 Механизм мышечного сокращения.
- •7.2.3 Изменение величины силы в фазе подъёма
- •7.3 Изменения в мышечных волокнах под влиянием различных тренировочных воздействий.
- •7.3.1 Особенности различных типов мышечных волокон
- •7.3.2 Увеличение количества миофибрилл в быстрых мышечных волокнах
- •1 Подтягивание с большими грузами.
- •2 Подтягивание с цепью.
- •3 Интервальная тренировка с отягощением.
- •7.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах
- •1 Подтягивание со спрыгиванием.
- •2 Подтягивание в сверхнизком темпе.
- •3 «Лесенки» и «пирамиды».
- •7.3.4 Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах
- •7.3.5 Увеличение количества миофибрилл в медленных мышечных волокнах
- •1 Увеличение силы мышц-сгибателей пальцев.
- •2 Развитие силы ммв мышц, выполняющих подъём туловища.
- •7.3.6 Увеличение количества митохондрий в медленных мышечных волокнах
- •7.3.7 Схема изменений в мышечных волокнах под воздействием нагрузки.
- •7.4 Энергообеспечение динамической работы при подтягивании.
- •7.4.1 Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе
- •7.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе
- •7.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе
- •7.4.4 Энергообеспечение динамической работы при подтягивании в максимальном темпе
- •7.5 Оценка уровня развития силовых способностей по внешним признакам.
- •7.6 Динамические силовые способности и результат в подтягивании.
- •7.7 Условия для повышения динамических силовых способностей
2.3.1.1 Креатинфосфатный механизм ресинтеза атф.
В мышечных клетках всегда имеется креатинфосфат – соединение, обладающее большим запасом энергии и легко отдающее её при взаимодействии с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате гидролиза АТФ.
Креатинфосфатный механизм ресинтеза АТФ обладает самой высокой скоростью (мощностью) энергопродукции - 900-1100 кал/мин*кг, что обусловлено высокой активностью фермента креатинкиназы, который регулирует протекание химической реакции с участием креатинфосфата.
Как только уровень АТФ начинает снижаться, сразу же запускается в ход данная реакция, что обеспечивает ресинтез АТФ. Время развёртывания креатинфосфатного механизма невелико – всего 1-2 секунды. Поскольку исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1-2 секунд, к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью [11].
Данный механизм играет решающую роль в энергообеспечении работы предельной мощности, причем емкость этого механизма невелика и работа с предельной мощностью, обеспечиваемая этим механизмом, может продолжаться не более 10 секунд, что связано с небольшими исходными запасами креатинфосфата в мышцах.
2.3.1.2 Гликолитическии механизм ресинтеза атф.
Обеспечивает ресинтез АТФ за счет анаэробного (бескислородного) расщепления глюкозы и гликогена (гликолиз и гликогенолиз) с образованием молочной кислоты (лактата). Данный механизм работает в тех случаях, когда сокращающиеся мышцы испытывают недостаток в снабжении кислородом. Такие условия возникают не только при работе большой мощности, но и в самом начале любой работы, когда снабжение мышц кислородом отстает от потребности в нем, а также при статических сокращениях мышц даже небольшой силы (превышающей 20% от максимальной), когда из-за внутримышечного давления резко ограничивается кровоснабжение, а значит и обеспечение мышц кислородом [9].
Анаэробный гликолитический механизм включается практически с началом мышечной работы, но выходит на максимальную мощность (о чем можно судить по наибольшей скорости образования молочной кислоты), равную 750-850 кал/мин*кг примерно через 30-40 секунд. Кстати, скорость гликолиза по сравнению с уровнем покоя может увеличиваться почти в 2000 раз, причём повышение скорости гликолиза может наблюдаться уже в предстартовом состоянии за счёт выделения андреналина [11].
Время работы с максимальной скоростью составляет 2-3 минуты. Существуют две основные причины, объясняющие такую небольшую величину этого критерия. Во-первых, гликолиз протекает с высокой скоростью, что быстро приводит к уменьшению в мышцах концентрации гликогена и, следовательно, к последующему снижению скорости его распада. Во-вторых, по мере накопления молочной кислоты внутри клеток сокращающейся мышечной ткани их так называемая активная реакция (рН) сдвигается в кислую сторону, что приводит к снижению каталитической активности ферментов, регулирующих гликолиз и, соответственно, к снижению скорости самого гликолиза. Таким образом, скорость образования молочной кислоты в сокращающихся мышцах регулируется по механизму отрицательной обратной связи: чем больше скорость накопления молочной кислоты, тем сильнее торможение, замедляющее анаэробный гликолиз.
В этой связи можно сказать, что емкость гликолитического механизма энергообеспечения зависит от его мощности: чем больше мощность мышечной работы (например, темп подтягиваний), тем быстрее протекает процесс накопления молочной кислоты и, следовательно, тем меньше время, в течение которого спортсмен может удерживать заданную мощность работы (в нашем случае - темп подтягиваний).