Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция 2 для учащихся.docx
Скачиваний:
12
Добавлен:
11.11.2019
Размер:
55.73 Кб
Скачать

Миоглобин

Миоглобинхромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.

Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.

Гемоглобин

Гемоглобин – состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II).

Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении.

Изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.

  1. Типы гемоглобна – физиологические и патологические, их биологическое и клиническое значение.

Выяснилось, что у человека имеются три основных типа нормального гемоглобина:

  • эмбриональный U

  • фетальный - F

  • гемоглобин взрослого человека - А. HbА.

Кроме нормальных типов гемоглобина в настоящее время известно свыше 50 его патологических вариантов.

Как нормальные, так и патологические типы гемоглобина различаются не по структуре протопорфиринового кольца, а построению глобина. Разница может заключаться в изменении целых пар полипептидных цепей в гемоглобиновой молекуле, или при сохранении тех же полипептидных цепей, замещаются на определенном месте в первичной структуре одна аминокислота другой.

ОКСИГЕМОГЛОБИН

Нb + О2 → НbО2оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм.рт.ст.).

КАРБГЕМОГЛОБИН

В капиллярах тканей, где парциальное давление кислорода низкое (5 мм.рт.ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.

МЕТГЕМОГЛОБИН

Метгемоглобин - производное гемоглобина, в котором двухвалентный атом железа переходит в трехвалентный. При процессах обмена в эритроцитах всегда образуются известные количества метгемоглобина, который, однако, восстанавливается обратно в гемоглобин под воздействием фермента метгемоглобинредуктазы, так что в цельной крови здорового человека метгемоглобин не превышает 2% общего содержания гемоглобина (0,03-0,3 г%).

КАРБОКСИГЕМОГЛОБИН При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.

СУЛЬФОГЕМОГЛОБИН Химическая структура сульфогемоглобина не выяснена. Вероятно, две виниловые группы гемоглобина соединяются, посредством SО2-мостиков, с соседними метиновыми связями. В норме, сульфогемоглобина в крови нет. Он появляется при отравлениях соединениями сурьмы, фенацетином, бромом, сульфонамидами, нитратами (колодезная вода), серными соединениями и пр.

Типы гемоглобина имеют большое значение не только для диагноза, но и перемежают вопрос о патогенезе анемии из чисто морфологической области в биохимическую. Анемии, вызванные появлением патологического типа гемоглобина, называются гемоглобинопатиями (наследственные)или гемоглобинозами.

СЕРПОВИДНО – КЛЕТОЧНАЯ АНЕМИЯ Классическим примером является серповидно-клеточная анемия. Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.

ТАЛАССЕМИИ Другая важная группа нарушений, связанных с аномалиями гемоглобина - талассемии. Для них характерна пониженная скорость синтеза альфа-цепей гемоглобина (альфа-талассемия) или бета-цепей (бета-талассемия). Это приводит к анемии, которая может принимать очень тяжелую форму.

-4-

Свойства белков определяются свойствами аминокислот, из которых состоят белки. Аминокислоты – амфотерные соединения, и это их свойство обусловлено амино- и карбоксильными группами. Число таких групп зависит от числа основных и кислых аминокислот в белковой молекуле. Все эти группы в белке находятся в ионизированном состоянии в зависимости от рН.

К физико-химической характеристике белка относят:

  • размер молекул белка (молекулярная масса);

  • гидрофильность и гидрофобность;

  • изоэлектрическое состояние белка;

  • коллоидность;

  • амфотерность белков;

  • осаждение белков (высаливание, денатурация);

Физико-химические свойства определяют биологическую роль белков, их участие в процессах обмена веществ, а также в формировании структуры и функций организма.

Молекулярная масса белков.

Молекулярная масса белков колеблется от нескольких тысяч до миллионов. Размеры молекул отдельных белков могут приближаться к размерам наименьших живых существ. Одной из характерных особенностей многих белков является их свойство образовывать молекулярные агрегаты, состоящие из нескольких молекул.

Гидрофильность и гидрофобность белков.

Белки обладают большим сродством к воде, т.е. вокруг белковой молекулы расположена гидратная оболочка, предохраняющая от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Альбумины связываются с молекулами воды и имеют большую водную оболочку, а глобулины, фибриноген присоединяет воду хуже и гидратная оболочка у них меньше.

Таким образом, устойчивость водного раствора белка определяется двумя факторами:

  1. наличием электрического заряда белковой молекулы;

  2. находящаяся вокруг молекулы водная оболочка.

При удалении этих факторов белок выпадает в осадок.

Изоэлектрическое состояние белка.

Белки также при определенном значении рН имеют нейтральный заряд, такое значение рН называют изоэлектрической точкой белка (рJ). При рН ниже рJ увеличивается число положительных зарядов и молекула белка становится катионом. При рН выше рJ увеличивается число отрицательных зарядов и белок становится анионом. рJ большинства природных белков находятся в пределах рН 2,7 – 7,9. Значение рJ белка важно для разделения белков методом электрофореза, который занимает а лабораторной практике важное место.

Все несущие заряд частицы передвигаются в электрическом поле в зависимости от величины заряда. Постоянное электрическое поле можно получить, используя источники постоянного напряжения и пропуская постоянный ток через буферный раствор. Выбирая рН буферного раствора, можно управлять характером распределения белков в электрическом поле. Скорость перемещения молекул зависит от ряда факторов:

  • присутствия других ионов,

  • температуры,

  • молекулы носителя, на котором проводится разделение,

  • величины заряда самой белковой молекулы.

Метод разделения, учитывающий все указанные факторы называется электрофорезом. Его применяют как для разделения белков, так и любых частиц, имеющих заряд.

Вначале разделение белков проводили в буферном растворе (электрофорез со свободной границей), а затем большое распространение получил электрофорез на носителях. Носителем служат полоски бумаги, ацетатцеллюлозы, агаровый, крахмальный, полиакриламидный гель, смоченные или содержащие буферный раствор. В клинической практике наибольшую популярность приобрел электрофорез на ацетатцеллюлозных полосках для разделения белков плазмы крови. Обычно белки плазмы в стандартных условиях электрофореза (буферный раствор рН 8,8) разделяются на 5 фракций. Полоски пропитывают красителем, который количественно связывается с белками, что позволяет после извлечения краски количественно оценить элекрофореграмму. Соотношение между отдельными фракциями меняется при разных заболеваниях.

Растворы белков в воде.

Белки образуют в воде особую форму растворов – растворы высокомолекулярных соединений. Размеры белковых частиц придают им свойства коллоидных соединений. Белки в организме находятся в коллоидном состоянии. Имея большой размер молекулы – 0,001-0,1 мкм, белки не проходят через полупроницаемые перегородки, какими являются клеточные мембраны. Этим пользуются для очистки растворов белка от остатков низкомолекулярных веществ (солей, сахаров) при изготовлении иммунных сывороток, сухой плазмы, γ-глобулина и других препаратов. Метод такой очистки белков получил название – диализ. Явление диализа лежит в основе действия аппарата «искусственная почка», который широко используется в клиниках для лечения почечной недостаточности. Для коллоидных растворов характерна способность преломлять луч света, что используется для количественного определения белка методом рефрактометрии.

Амфотерность белков.

Благодаря наличию в белках аминных и карбоксильных групп, они в кислой среде диссоциируют как основания, а в щелочной – как кислоты. Амфотерные свойства белков обусловливают их значение как буферных систем (белковая буферная система), поддерживающих постоянство реакции среды в тканях, их участие в регуляции рН крови.

Осаждение белков.

а) обратимое – (высаливание) путем добавления солей щелочноземельных металлов. В основе действия лежит конкуренция их с белками за воду. Высаливающий эффект наступает при достаточно высоких концентрациях солей (насыщенные или полунасыщенные растворы). В практике часто используют Nа24 и (NН4)24. эти соли удаляют водную оболочку и снимают заряд. Глобулины, имеющие крупные и тяжелые молекулы и небольшую водную оболочку, выпадают в осадок при неполном насыщении раствора солями, а альбумины как более мелкие молекулы, окруженные большой водной оболочкой – при полном насыщении. Высаливание не вызывает нарушения структуры белков.

б) необратимое осаждение связано с нарушением пространственной структуры, что приводит к потере свойств (денатурация).

Денатурация – нарушение пространственной структуры белковой молекулы. При этом белок теряет все свои биологические и физико-химические свойства. Факторы вызывающие денатурацию:

  • нагревание, облучение, охлаждение,

  • механическое встряхивание, химическое воздействие;

Первичная структура белка при денатурации не изменяется, что создает возможность восстановления функций и структуры белка (в большинстве случаев денатурация необратима). В лабораторной практике денатурация используется для депротеинизации биологических жидкостей. Денатурация белков положена в основу лечения отравлений тяжелыми металлами, когда больному per os вводят молоко или сырые яйца с тем, чтобы Ме, денатурируя белки молока и яиц, адсорбировали их на поверхности Ме и не действовали на белки слизистой оболочки желудка и кишечника, а также не всасывались в кровь.

Изопротеины - белки с одинаковыми функциями, но отличающиеся физико-химическими свойствами.

Например, фермент-белок лактатдегидрогеназа (ЛДГ), состоит из 4-х субъединиц, формируется из 2-х генетически детерминированных полипептидных цепей «Н» и «М». Их разные комбинации позволяют создать 5 ферментов-белков, катализирующих одинаковую реакцию в разных органах и тканях. Это имеет важное значение для диагностики различных заболеваний.