
- •Теория вероятностей
- •§ 1. Предмет теории вероятностей
- •§ 2. Случайные события или исходы. Множество элементарных событий. Основные понятия
- •Примеры на построение множества ω.
- •Алгебраические операции над событиями
- •Диаграмма Венна.
- •Свойства операций
- •§ 3. Различные подходы к определению вероятности
- •П. 1. Аксиоматическое определение вероятности
- •П. 2. Классическое определение вероятности
- •Решение.
- •Решение.
- •Пп. 1. Комбинаторный метод вычисления вероятностей в классической схеме
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Пп. 2. Геометрические вероятности в классической схеме
- •Решение.
- •П. 3. Статистическое определение вероятности
- •§ 4. Основные теоремы теории вероятностей п.1. Теоремы сложения вероятностей
- •Доказательство.
- •Доказательство (методом математической индукции).
- •Доказательство.
- •Доказательство.
- •Решение.
- •Д оказательство (геометрическое)
- •П.2. Теоремы умножения вероятностей
- •Доказательство.
- •Решение.
- •Решение.
- •§ 5. Формулы полной вероятности и формула Байеса п. 1. Формула полной вероятности (следствие обеих основных теорем сложения и умножения)
- •Решение.
- •П. 2. Формула Байеса (Бейеса) (следствие теоремы умножения и формулы полной вероятности)
- •Решение.
- •§ 6. Последовательность независимых испытаний п. 1. Независимые испытания
- •П. 2. Формулы Бернулли.
- •Решение.
- •Решение.
- •Замечания.
- •Решение.
- •П. 3. Предельные теоремы в схеме Бернулли
- •Решение.
- •Решение.
- •Доказательство.
- •Решение.
- •П. 4. Наивероятнейшее число появления события в независимых испытаниях
- •Решение.
- •§ 7. Случайные величины п. 1. Основные определения
- •П. 2. Законы распределения случайных величин. Законы распределения дискретных случайных величин. Функция распределения
- •Формы закона распределения дсв.
- •Решение.
- •Решение.
- •3. Функция распределения – универсальный закон распределения (для дсв и нсв).
- •Свойства f(X).
- •Доказательство.
- •Графики функции распределения.
- •Решение.
- •Решение.
- •П. 3. Плотность распределения вероятностей нсв
- •Свойства плотности распределения
- •2. Условие нормировки: интеграл в бесконечных пределах от плотности распределения равен 1: . (4) Доказательство
- •Решение.
- •Решение.
- •П. 4. Числовые характеристики случайных величин, их роль и назначение
- •Пп 1. Характеристики положения (математическое ожидание, мода, медиана)
- •1. Математическое ожидание или среднее значение случайной величины
- •2. Мода случайной величины
- •3. Медиана случайной величины
- •Пп 2. Моменты
- •Доказательство.
- •И эксцесс
- •Решение.
- •Решение.
- •Решение.
- •П. 5. Законы распределения вероятностей дискретных случайных величин: биномиальный, Пуассона, гипергеометрический. Пп 1. Биномиальное распределение
- •Решение.
- •Пп 2. Распределение Пуассона
- •Решение.
- •Решение.
- •Пп 3. Гипергеометрическое распределение
- •Решение.
- •П. 6. Законы распределения вероятностей непрерывных случайных величин: равномерный, показательный, нормальный Пп 1. Равномерное распределение или закон равномерной плотности
- •Решение.
- •Пп 2. Показательное или экспоненциальное распределение
- •Решение.
- •Пп 3. Нормальный закон распределения
- •Смысл параметров m и σ
- •Решение.
- •§ 8. Системы случайных величин или случайные векторы п. 1. Основные понятия.
- •П. 2. Законы распределения свдт и свнт
- •Закон. Таблица распределения – закон распределения свдт.
- •Решение.
- •Решение.
- •Закон. Функция распределения – закон распределения свдт и свнт.
- •Решение.
- •3. Плотность распределения (для свнт)
- •Решение.
- •Решение.
- •П. 4. Плотности распределения отдельных величин, входящих в систему. Равномерное и нормальное распределения. Условные законы распределения
- •Решение.
- •Решение.
- •П. 5. Числовые характеристики системы. Корреляция. Линии регрессии
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •§ 9. Закон больших чисел. Предельные теоремы теории вероятностей
П. 2. Формулы Бернулли.
Пусть проводятся последовательные независимые испытания, и наблюдается результат совместного осуществления тех или иных исходов каждого испытания.
Схема независимых испытаний является математической моделью серии испытаний, повторяющихся при неизменных условиях. Такая схема называется полиномиальной.
Простейшим классом повторяющихся независимых испытаний является последовательность независимых испытаний с двумя исходами (k = 2): «успех», «неудача» и с неизменными вероятностями успеха – р и неудачи – q, где q = 1 – p, в каждом испытании. Такая схема называется биномиальной.
Определение 27. Независимые испытания при двух исходах называются испытаниями Бернулли.
Рассмотрим задачу. Определить вероятность того, что в результате проведения n независимых испытаний некоторое событие А – успех (У) наступит ровно m раз, если в каждом из этих испытаний данное событие наступает с постоянной вероятностью Р(А) = Р(У) = р.
Решение.
Искомую вероятность обозначим Pm,n или Pn(m).
Событие А в данных испытаниях может появиться ровно m раз, причем, в разных последовательностях или комбинациях. Следовательно, остальные (n–m) раз наступает противоположное событие – неудача (Н), вероятность которого Р( ) = Р(Н) = q, (q = 1 – p).
Сначала найдем вероятность того, что события У наступают при определенных m испытаниях. Элементарные события в этом случае естественно обозначать цепочками вида:
УУУННУНН…УН (где У – m штук, Н – (n-m) штук).
По условию данные события – независимые, следовательно, по теореме 4 для произведения независимых событий можем записать, что
Р(УУУННУНН…УН) = Р(У)Р(У)Р(У)Р(Н)Р(Н)….Р(У)Р(Н) = рmqn-m.
Число успехов и неудач задано. Можно
менять только их расположения в цепочках,
которое однозначно определяется выбором
из n мест m
мест для успехов. Это можно сделать
способами.
Следовательно,
Pn(m) = рmqn-m.
В данной задаче мы доказали теорему Бернулли.
Теорема Бернулли. Если m – число успехов в n независимых испытаниях Бернулли, то вероятность того, что в результате проведения этих испытаний некоторое событие А наступит ровно m раз, находится по формуле: Pn(m) = рmqn-m, которая называется формулой Бернулли.
Следствие.
,
так как события, состоящие в различном
числе появления события А в серии
n испытаний несовместны
и образуют полную группу. Или можно было
данное равенство объяснить так:
.
Пример. Пусть монета брошена 5 раз. Требуется найти вероятность того, что выпало ровно 3 орла.
Решение.
В каждом из 5 независимых испытаниях (n
= 5) – бросании монеты – два исхода (k
= 2: орел, решка), следовательно, это
схема Бернулли с вероятностью успеха
(выпал орел) и неудачи (выпала решка)
.
Количество успехов: m
= 3.
По формуле Бернулли Pn(m) = рmqn-m найдем искомую вероятность:
P5(3) =
.
Замечания.
Замечание 1. Вероятность Pn(m) равна коэффициенту при xm в разложении бинома (q+px)n по степеням x. В силу этого свойства совокупность вероятностей Pn(m) называют биномиальным законом распределения вероятностей. (будем изучать позднее)
Замечание 2. Рассмотрим схему
испытаний с произвольным количеством
исходов. Пусть каждое из n
независимых испытаний имеет k
взаимно исключающих друг друга
исходов, т.е. в каждом испытании может
появиться одно из k
несовместных событий:
с вероятностями
,
не меняющимися от испытания к испытанию.
Найдем вероятность появления в течении
этих n испытаний m1
раз события А1, m2
раза события А2,…, mk
раз события Аk.
(m1 + m2
+ …+ mk
= m). Данная вероятность
находится по формуле:
.
Эта совокупность вероятностей является
коэффициентом при
в
разложении полинома
по
степеням x. Поэтому
эту схему называют полиномиальной.
Например. При n
подбрасываниях игральной кости
получается полиномиальная схема с
шестью исходами ( k =
6) и вероятностями
.
Если различать только «6» и «не 6», то
получим схему Бернулли с двумя исходами
(k = 2) и вероятностями
успеха
и неудачи
.
Замечание 3. При вычислении вероятности события, состоящего в том, что число успехов m лежит, например, между а и b, приходится находить числовые значения сумм вероятностей вида:
.
Например, вероятность того, что событие наступит а) менее k раз, b) более k раз, c) не менее k раз, d) не более k раз находятся соответственно по формулам:
а)
b)
с)
d)
В некоторых случаях удобнее перейти к
противоположному событию, например,
.
Пример. Пусть монета брошена 5 раз. Требуется найти вероятность того, что 1) менее двух раз выпал орел, 2) не менее двух раз выпал орел.