
- •1. Лекция №1 4
- •8.1. Концепция измерения в неклассическом естествознании. 65
- •8.2. Концепция моделирования состояний 68
- •9.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц 83
- •11.2. Флуктуации и альтернативная корреляция между ними в микромире 98
- •1.Лекция №1
- •1.1.Место, цели и задачи дисциплины
- •1.2.Распределение учебных часов и материала
- •1.3.Понятия об измерениях
- •1.4.Вопросы к экзамену
- •39. Флуктуации и альтернативная корреляция между ними в микромире.
- •Лекция №2
- •2.1. Естествознание как трансдисциплинарная область научного знания.
- •2.2. Трансдисциплинарная идея моделирования природы.
- •2.3. Трансдисциплинарная идея единства объекта и его окружения.
- •2.4. Трансдисциплинарная идея пространственно-временных отношений в природе.
- •2.5. Трансдисциплинарная идея целостности природы.
- •2.6. Трансдисциплинарная идея экспериментальной достоверности.
- •2.7. Роль трансдисциплинарных идей в целостном понимании природы.
- •1. Дайте определение понятию “парадигма”.
- •2. Дайте определение понятию “трансдисциплинарность”.
- •3. Какими обстоятельствами ограничивается выбор модели в естественной науке?
- •4. Какие цели в науке имеет познавательный процесс?
- •5. Что такое методология?
- •6. Какую стратегию мышления порождает классическая стратегия мышления?
- •7. Сформулируйте две фундаментальные парадигмы естествознания.
- •Лекция №3.
- •3.1. Образ природы в классическом естествознании.
- •3.1.1. Концепция измерения в классическом естествознании.
- •3.1.2. Концепция единого пространства-времени.
- •3.1.3. Концепция моделирования объектов
- •3.1.4. Концепция контролируемого воздействия.
- •3.2. Образ природы в неклассическом естествознании
- •3.2.1. Концепция измерения в неклассическом естествознании
- •3.2.2. Концепция моделирования состояний
- •3.2.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •3.2.4.Концепция макросостояний объектов
- •3.2.5. Концепция флуктуации и их корреляций
- •3.2.6. Флуктуации и альтернативная корреляция между ними в микромире
- •1. Дать определение термину «состояние физической системы».
- •2. Что называют косвенными измерениями?
- •3. Что называют системой единиц?
- •4. Дать определение термину «масса».
- •5. Назовите закон фундаментальной силы тяготения.
- •6. Почему пространство и время относительны?
- •7. Какие исходные утверждения лежат в основе специальной теории относительности Эйнштейна?
- •8. Как происходит передача взаимодействия с точки зрения физики?
- •9. Какие характеристики описывают контролируемое воздействие на частицу?
- •Лекция №4.
- •4. Концепция измерения в классическом естествознании. Классические измерительные системы. Проблема измерения в классическом естествознании. Единицы измерения и системы единиц.
- •4.1. Проблема измерения в классическом естествознании.
- •4.2. Единицы измерения и системы единиц.
- •4.3. Возникновение систем мер.
- •4.4.Возникновение и распространение метрической системы мер.
- •4.5. Эталоны.
- •4.6. Атомные часы.
- •1. В чем состоит смысл проведения серий повторных экспериментов в естествознании и как на практике обрабатываются результаты измерений?
- •2. Чем обусловлена точность измерений в рамках классических представлений?
- •3. Что такое эталон единицы измерения физических величин?
- •Лекция №5
- •5.1. Временные отношения в природе
- •5.2. Пространственные отношения в природе
- •5.3. Взаимосвязь Пространства и времени
- •5.4. Целостное описание пространства-времени
- •1. Какое первое свойство пространства и времени?
- •2. Назовите второе свойство пространства и времени.
- •3. Что называется пространственными координатами?
- •4. Что может выступать в роли системы отсчета (со)?
- •Лекция №6
- •6.1. Моделирование
- •6.2. Традиции атомизма и непрерывности в естествознании.
- •6.3. Фундаментальные физические модели объектов
- •6.4. Масса как универсальная характеристика инертности и гравитации
- •6.6. Полная энергия и полный момент как фундаментальные характеристики объекта
- •6.7. Роль фундаментальных законов сохранения в описании природы
- •1. Что такое «моделирование»?
- •Лекция №7.
- •Концепция контролируемого воздействия:
- •7.1. Воздействие и взаимодействие
- •7.2.Характеристики контролируемого воздействия на частицу
- •7.3. Фундаментальные силы
- •7.4. Механическая энергия и динамика частицы
- •7.5. Энергия взаимодействия в системе частиц
- •6.Опишите энергию взаимодействия в системе частиц.
- •Лекция №8.
- •8.1. Концепция измерения в неклассическом естествознании.
- •8.2. Концепция моделирования состояний
- •8.2.1. Неклассические представления о характеристиках объектов и состояний
- •8.2.2. Фундаментальные модели неклассической физики
- •1. Почему с неклассической точки зрения прибор оказывается неидеальным каналом связи между экспериментатором и исследуемым объектом?
- •3. Каким понятием описывается макроскопическая обстановка, в которой находится исследуемый объект:
- •Лекция №9.
- •9.1. Ограничение воздействия на микроуровне как фундаментальный закон природы
- •9.2. Микросостояние одной микрочастицы.
- •9.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •10. Что возникает в результате аннигиляции электрона и его античастицы?
- •11. Что называют бозонами?
- •12. Что представляет собой материя на макроуровне?
- •13. Что называют фермионами?
- •Лекция №10.
- •10.1. Тепловое равновесие как макросостояние.
- •10.2. Детерминированное и стохастическое движения. Ограничение воздействия на макроуровне как фундаментальный закон природы
- •10.3. Макропараметры как характеристики объектов и их макросостояний в тепловом равновесии
- •10.4. Два способа описания природы на макроуровне.
- •Лекция №11.
- •11.1. Флуктуации и их роль в описании природы
- •11.2. Флуктуации и альтернативная корреляция между ними в микромире
- •11.3. Флуктуации и неальтернативная корреляция между ними в макромире
- •11.4. Универсальные корреляции между флуктуациями в неклассической физике.
- •Лекция №12.
- •12. Физические принципы создания современной эталонной базы. Использование явления сверхпроводимости.
- •12.1. Свойство сверхпроводимости
- •12.2. Изотопический эффект
- •12.4 Высокотемпературная сверхпроводимость
- •6. Назовите известные теоретические модели высокотемпературной сверхпроводимости.
- •7. Какое промышленное применение находит сверхпроводимость?
- •Лекция №13.
- •13. Явление Зеемана. Явление Джозефсона.
- •13.1. Эффект Зеемана
- •13.2. Явление Джозефсона.
- •5. Эффекта Джозефсона применяется:
- •Лекция №14.
- •14. Явление Мессбауэра. Другие эффекты квантовой физики
- •14.1. Краткая история жизни знаменитого ученого. Научные достижения
- •14.2. Предыстория вопроса
- •14.3. Открытие Мёссбауэра
- •14.4. Общие применения метода
- •14.5. Применение эффекта Мессбаура для изучения свойств поверхности и объема кристаллов
- •14.6. Химические применения метода
- •14.7. Выводы
- •Лекция №15.
- •15.1.Общие сведения.
- •15.2. Объяснение эффекта Холла с помощью электронной теории
- •15.3. Эффект Холла в ферромагнетиках.
- •15.4. Эффект Холла в полупроводниках
- •15.5. Эффект Холла на инерционных электронах в полупроводниках
- •15.6. Датчик эдс Холла
- •1. Что такое эффект Холла?
- •2. Дайте объяснение эффекта Холла с помощью электронной теории.
- •3. Опишите эффект Холла в ферромагнетиках.
- •4. Опишите эффект Холла в полупроводниках.
- •5. Опишите эффект Холла в инерционных электронах в полупроводниках.
- •6. Что такое датчик эдс Холла?
- •Лекция №16.
- •16. Измерение абсолютного заряда электрона и его удельного заряда. Опыт Милликена. Метод Томсона. Метод магнитной фокусировки Буша.
- •16.1. Инерционный метод измерения заряда. История открытия электрона
- •16.2. Метод магнитной фокусировки Буша
- •16.3. Опыт Милликена
- •1. В чем сущность метода Томсона?
- •2. Трубка Томсона?
- •3. Вывод формулы отношение заряда к массе частицы?
- •4. В чем основная задача электронной и ионной оптики? и как их принято называть?
- •5. Когда был открыт «метод магнитной фокусировки»?
- •6. В чем суть «метода магнитной фокусировки»?
- •7. Какие требования необходимо соблюдать при выполнении опыта?
- •8. Определение элементарного заряда посредством вычислительного эксперимента?
- •9. Вывод формулы заряда капли через скорость падения капли?
- •10. Современное значение "атома" электричества?
- •Лекция №17.
- •17.1. Шумы, обусловленные дискретностью вещества. Помехи
- •17.2. Дробовый эффект
- •17.3.Критерий устойчивости Найквиста. Формула Найквиста
- •17.4. Естественные пределы точности измерений
- •17.5. Методы повышения точности средств измерений и выполнения измерений
- •17.6. Фундаментальный источник погрешностей измерений. Основные понятия и виды погрешностей
- •17.7. Броуновское движение
- •1. Какие виды шумов вы знаете?
- •2. Как и где используются Шумы Найквиста?
- •3. Что называется Броуновским движением?
- •4. Что такое диффузия?
- •5. В чем различие между диффузией и броуновским движением?
- •6. Что такое точность измерений?
- •7. Какие виды погрешности вы знаете?
- •8. В чем заключается Дробовый эффект?
- •9. Дайте определение помехе.
- •Ответы на вопросы:
17.5. Методы повышения точности средств измерений и выполнения измерений
Общими методами повышения точности СИ (средств измерений) и выполнения измерений является следующие.
Методы стабилизации параметров СИ реализуются использованием стабильных материалов, выбором соответствующих режимов работы.
Методы пассивной защиты от быстро изменяющихся влияющих величин путём их усреднения (фильтрации) с целью снижения случайных погрешностей. Достоинствами методов пассивной защиты является их простота, надёжность и малая стоимость, недостаток – невозможность защиты СИ от медленно изменяющихся влияющих величин.
Методы активной защиты от постоянных или медленно изменяющихся влияющих величин – это стабилизация этих величин: стабилизация питающих напряжений, температуры, влажности и т.д. Основной недостаток активной защиты – её сложность и высокая стоимость.
Методы коррекции систематических погрешностей заключается в автоматическом исправлении возникающей погрешности.
Исключение прогрессирующих погрешностей путём коррекции нуля и чувствительности средств измерений. В этом случае исключаются только те погрешности, которые были в данный момент времени у данного СИ, т.к. сразу после коррекции идёт новое возрастание этих погрешностей. Такая коррекция должна периодически повторяться и тем чаще, чем выше требуемая точность и чем сложнее измерительное устройство.
Статистическая обработка данных для получения усреднённых значений полученных результатов и уменьшения случайных погрешностей. Это связанно с увеличением количества измерений, т.е. с увеличением времени на измерительную операцию.
17.6. Фундаментальный источник погрешностей измерений. Основные понятия и виды погрешностей
Погрешности измерений подразделяются на методические, инструментальные, вычисления и погрешности оператора.
Методические
погрешности(
)
возникают из-за несовершенства метода
измерений, неточности формул, применяемых
для описания явлений, положенных в
основу измерений. К ним относятся также
погрешности, обусловленные влиянием
средств измерений на объект, свойство
которого изменяется.
Инструментальные
(приборные, аппаратурные) погрешности
(
)–
это погрешности средств измерений,
определяемые несовершенством средств
измерений вследствие недостаточно
высокого качества элементов, влиянием
внешних условий, воздействием помех на
входе, погрешностями изготовления и
сборки средств измерений. Инструментальная
погрешность индивидуальна для каждого
средства измерений.
Погрешность
оператора
(субъективная,
личная
),
в узком смысле – это погрешность
отсчитывания, возникает вследствие
индивидуальных особенностей (степень
внимания, подготовленность) операторов,
проводящих измерения. Эти погрешности
практически отсутствуют при использовании
автоматизированных средств измерений.
Таким
образом, погрешность измерения
представляет собой объединение этих
составляющих
.
По форме представления погрешности разделяются на абсолютные и относительные.
Абсолютная
погрешность
(
)
измерений, выражаемая в единицах
измеряемой величины, представляет
разность между измеренным
и истинным (действительным) значениями
измеряемой величины
.
Относительная
погрешность
(
)
представляет отношение абсолютной
погрешности к истинному (действительному)
значению измеряемой величины
.
Обычно относительная погрешность
выражается в процентах
(3)
По характеру измерения физической величины погрешности средства измерения делятся на статические и динамические.
Статистическая
погрешность (
)
– это погрешность средств измерений в
случае, когда измеряемая величина за
время измерения не изменяется.
Причины возникновения систематических погрешностей весьма разнообразны: несовершенство используемых средств и методов измерений, неправильное расположение приборов в пространстве и по отношению друг к другу; влияние внешних факторов (температурных, гравитационных, радиационных и других полей) и др.
Систематические погрешности можно исключить или уменьшить, устранив причины их появления.