Скачиваний:
63
Добавлен:
02.05.2014
Размер:
1.8 Mб
Скачать

Экологические проблемы отвалов литейного производства

Литейное производство является основной заготовительной базой машиностроения. Около 40% всех заготовок, используемых в машиностроении, получают литьем. Однако, литейное производство является одним из наиболее экологически неблагоприятных.

В литейном производстве применяется более 100 технологических процессов, более 40 видов связующих , более 200 противопригарных покрытий.

Это привело к тому, что в воздухе рабочей зоны встречается до 50 вредных веществ, регламентированных санитарными нормами. При производстве 1т чугунных отливок выделяется:

  • 10..30кг - пыли;

  • 200..300кг - оксида углерода;

  • 1..2кг - оксида азота и серы;

  • 0.5..1.5г - фенола, формальдегида, цианидов и др.;

  • 3м3- загрязненных сточных вод может поступить в водный бассейн;

  • 0.7..1.2т - отработанных смесей в отвал [10].

Основную массу отходов литейного производства составляют отработанные формовочные и стержневые смеси и шлак. Утилизация этих отходов литейного производства наиболее актуальна, т.к. несколько сот гектаров поверхности земли занимают вывозимые ежегодно в отвал смеси [10], в Одесской области.

В целях снижения загрязнения почв различными промышленными отходами в практике охраны земельных ресурсов предусматриваются следующие мероприятия:

  • утилизация;

  • обезвреживание методом сжигания;

  • захоронение на специальных полигонах;

  • организация усовершенствованных свалок [11].

Выбор метода обезвреживания и утилизации отходов зависит от их химического состава и степени влияния на окружающую среду.

Так, отходы металлообрабатывающей, металлургической, угольной промышленности, содержат частицы песка, породы и механические примеси. Поэтому отвалы изменяют структуру, физико-химические свойства и механический состав почв.

Указанные отходы используют при строительстве дорог, засыпке котлованов и отработанных карьеров после обезвоживания. В тоже время отходы машиностроительных заводов и химических предприятий, содержащие соли тяжелых металлов, цианиды, токсичные органические и неорганические соединения, утилизации не подлежат. Эти виды отходов собирают в шламонакопители, после чего их засыпают, утрамбовывают и озеленяют место захоронения [12].

Фенол - наиболее опасное токсичное соединение, находящееся в формовочных и стержневых смесях. В тоже время исследования показывают, что основная часть фенолсодержащих смесей, прошедших заливку, практически не содержит фенола и не представляет собой опасности для окружающей среды. Кроме того, фенол, несмотря на его высокую токсичность, быстро разлагается в почве [13]. Спектральный анализ отработанных смесей на других видах связующего показал отсутствие особоопасных элементов: Hg, Pb, As, F и тяжелых металлов [13]. Т.е., как показывают расчеты данных исследований, отработанные формовочные смеси не представляют собой опасности для окружающей среды и не требуют каких-либо специальных мероприятий по их захоро­нению [13]. Негативным фактором является само существование отвалов, которые создают неприглядный пейзаж, нарушают ландшафт. Кроме того, пыль, уносимая с отвалов ветром, загрязняет окружающую среду [14]. Однако, нельзя сказать, что проблема отвалов не решается. В литейном производстве существует целый ряд технологического оборудования, позволяющего проводить регенерацию формовочных песков и использовать их в производственном цикле неоднократно. Существующие методы регенерации традиционно делятся на механические, пневматические, термические, гидравлические и комбинированные.

По данным Международной комиссии по регенерации песков, в 1980 г. из 70 опрошенных литейных предприятий Западной Европы и Японии 45 использовали установки механической регенерации [15].

В тоже время, литейные отработанные смеси - хорошее сырье для стройматериалов: кирпича, силикатного бетона, и изделий из него, строительных растворов, асфальтобетона для дорожных покрытий, для отсыпки полотна железных дорог [10].

Исследования Свердловских ученых (Россия) показали, что отходы литейного производства обладают уникальными свойствами: ими можно обрабатывать осадки сточных вод (для этого пригодны существующие отвалы литейного производства); защищать стальные конструкции от почвенной коррозии [16]. Специалисты Чебоксарского завода промышленных тракторов (Россия) использовали пылевидные отходы регенерации в качестве добавки (до 10%) при производстве силикатного кирпича [10].

Многие литейные отвалы используются как вторичное сырье в самом литейном производстве. Так, например, кислый шлак сталелитейного производства и феррохромовый шлак применяются в технологии шликерного формообразования при литье по выплавляемым моделям [17].

В ряде случаев отходы машиностроительных и металлургических производств содержат значительное количество химических соединений, которые могут представлять ценность как сырье и использоваться в виде дополнения к шихте [18].

Рассмотренные вопросы улучшения экологической обстановки при производстве литых деталей позволяет сделать вывод о том, что в литейном производстве можно комплексно решать весьма сложные экологические проблемы.

ВЫВОДЫ

Результатом данной работы явилась разработанная технология получения тонкостенных ребристых радиаторов в песчано-глинистые сырые формы, которая имеет ряд особенностей:

  • выбор разъема модели и формы по диагонали;

  • применение при формовке пенополистироловых вкладышей, выжигаемых при заливке;

  • вентилирование полости формы через систему выпоров и газоотводные наколы для каждого ребра;

  • применение протяжного шаблона при извлечении модели из формы;

  • совмещение функций выпора и прибыли.

Эти технологические особенности обеспечивают улучшение газового режима формы, предотвращают засоры, а также полную проливаемость отливки. Применение разработанной технологии практически полностью исключило брак отливок по недоливам, газовым, усадочным и песчаным раковинам.

Разработанная математическая модель скорости затвердевания отливки позволяет уже на стадии проектирования по химическому составу, механическим свойствам, конфигурации, судить о возможной структуре будущей отливки. Что позволяет конструктору-технологу своевременно вносить изменения и коррективы в разрабатываемую технологию.

Так в результате просчета математической модели получено, что структурой отливки теплообменник является феррит+графит с незначительными включениями перлита. Это в последствии и подтвердилось на практике.

Для создания более плотной перлитной структуры необходимо изменить скорость кристаллизации или химический состав металла. Изменение химического состава металла по технологическим причинам в данном случае более приемлемо. При изменении химического состава для создания более плотной структуры применялась сурьма, т.к. присадка данного компонента в металл (на дно ковша) не представляет собой никаких трудностей и возможна в любом литейном цехе.

В результате проведенных экспериментов выявлено, что незначительная присадка сурьмы изменяет его структуру. Преобладающей структурой становится перлит+графит, причем графитовые включения измельчаются, более равномерно распределяются по сечению отливки и стремятся к шаровидной форме. Все это повышает герметичность получаемого чугуна, а следовательно и отливки.

По результатам экспериментов выявлена оптимальная в процентном соотношении присадка сурьмы обеспечивающая герметичность данной отливки и не ухудшающая ее механических свойств.

При получении отливок работающих при повышенном давлении для обеспечения их герметичности необходимо произвести присадку сурьмы на дно ковша 0.1 %-0.4%от массы жидкого металла.

Рис.10-1. Годная отливка

По разработанной технологии отлита опытная партия радиаторов (рис.10-1) с присадкой сурьмы 0.16%. Полученные радиаторы успешно выдержали заводские испытания давлением 11 кгс/см2, в отличии от отливок полученных без присадок сурьмы, которые давали “течь” при 4-5 кгс/см2.

Исходя из результатов экспериментов и производственных испытаний можно сделать вывод, что при литье тонкостенных чугунных отливок, работающих при повышенных давлениях, можно использовать серый чугун с присадкой сурьмы взамен высокопрочных чугунов, что значительно облегчает процесс производства.

ЛИТЕРАТУРА

  1. Волков В.И., Устинов М.А. Отливка чугунных радиаторов. -М.: Гос.Издательство строительной литературы, 1946. -131 с.

  2. Безмаслянный крепитель "БК" в радиаторном и котельном производстве. -М.: Промстройиздат, 1954, -10 с.

  3. Новый безмаслянный крепитель КО. -Таганрог, 1965. -7 с.

  4. Методические указания по выполнению раздела "Охрана труда" в дипломных проектах, Одесса 1986, А.К.Машков.

  5. Методические указания и задания к самостоятельной работе студентов по курсу "Охрана труда" для студентов специальности 12.03 А.К.Машков, ОПИ 1989.

  6. В.Н.Иванов. Словарь справочник по литейному производству

  7. Справочник Средства защиты в машиностроении, С.В.Белов, А.Ф.Козьяков, О.Ф.Партолин и др., 1989, -М: Машиностроение -368 с.

  8. Получение герметичных чугунных отливок гидроаппаратуры с литыми каналами. Обзор. -М., 1973. -51 с.

  9. Исследование герметичности чугунных отливок для компрессоров холодильных машин. Отчет ОПИ. -Одесса, 1968.

  10. Грачев В.А., Сосновский Е.Д. Улучшение условий труда и экологии в литейном производстве // Литейное производство, 3, 1990. -с. 29

  11. Охрана окружающей среды / С.В.Белов, Ф.А.Козьяков и др. -М: Всшая школа, 1983. -264с.

  12. Справочная книга по охране труда в машиностроении / Г.В.Бектобеков и др. -Л: Машиностроение, 1989. -541с.

  13. Токсичные вещества в твердых отходах Литейного производства А.А.Ляпкин, Н.С.Чуракова, Т.В.Баталова // Литейное производство, 10, 1984. -с. 35-36.

  14. О принципах захоронения отходов литейного производства. А.А.Ляпкин, М.В.Пасынкова // Литейное производство, 5, 1987. -с. 9-11.

  15. Регенерация песка из отработанных смесей. А.А.Шпектор, В.С.Палестин, В.Н.Скорняков // Литейное производство, 5, 1987. -с. 26-30.

  16. Проблемы экологии и пути их решения в литейном производстве. А.И.Корзон, А.А.Ляпкин, Р.И.Оглоблина // Литейное производство, 3, 1988. -с. 2-3.

  17. Об экологичности шликерной технологии Л.А.Иванова, Л.В.Прокопович, И.В.Прокопович /Сб. "Пути повышения качества и экономичности литейных процессов". -Одесса: Совпин, 1994. -с. 37-38.

  18. Техника защиты окружающей среды: Учебное пособие для вузов / Н.С.Торочешников, А.И.Родионов и др. -М.: Химия, 1981. -368 с.

  19. Исследования герметичности литейных сплавов. /Сб. "Труды первого совещания по литейным свойствам сплавов". -Киев: Наукова думка, 1968.

  20. Maschine Design, США, 1970, Т -29.

  21. Влияние углерода и кремния на пористость чугунных цилиндровых втулок для дизелей. // Вестник машиностроения, 1969, 10.

  22. Свойства элементов. Справочник /Под редакцией М.Е.Дрица- М.: Металлургия, 1985. -672 с.

  23. Колесниченко А.Г., Дубинин А.В. О герметичности серых чугунов // Литейное производство, 1979, 12 -с. 18-20.

  24. Исследование процесса получения здоровых корпусных станочных отливок и отливок гидравлических систем. -Очет ОПИ, 1962. -150 с.

  25. Доценко П.В. Исследование некоторых свойств серых чугунов, легированных сурьмой. - Диссертация ктн. -Одесса; ОПИ, 1967. -160 с.

  26. ГОСТ 24812-81. Ипытание изделий на воздействие механических факторов.

  27. В.А.Рыбкин Ручное изготовление литейныХ форм. - М.: Высшая школа, 1986. -199 с.

  28. Справочник молодого литейщика. - М.: Высшая школа, 1991. -319 с. Абрамов Г.Г., Панченко Б.С.

  29. Могилев В.К., Лев О.И. Справочник литейщика. - М.: Машиностроение, 1988. -272 с.

  30. Куманин И.Б. Вопросы теории литейных процессов. - М.: Машиностроение, 1976. -216с.

  31. Методические указания к лабораторным работам по дисциплине "Литейное материаловедение". Раздел "Определение твердости металлов и сплавов" для студентов специальности 12.03. /Сост. В.Г.Борщ, В.И.Саитов. - Одесса: ОПИ, 1991. -20 с.

  32. Методические указания к лабораторным работам по дисциплине "Литейное материаловедение". Раздел "Изучение макро- и микроструктуры металлов и сплавов". для студентов специальности 12.03. /Сост. В.Г.Борщ, П.В.Доценко. - Одесса: ОПИ, 1990. -32 с.

  33. Методические указания к выполнению лабораторным работам по дисциплине "Теория формирования отливок". для студентовспециальности 12.03. /Сост. Л.А.Иванова, Ю.Г.Баринов. - Одесса: ОПИ, 1991. -28 с.

  34. Баландин Г.Ф. Основы формирования отливки. Ч.1. Тепловые основы теории. Затвердевание и охлаждение отливки. -М.: Машиностроение, 1976 -328 с.

  35. Комаров О.С. Термокинетические основы кристаллизации чугуна. - Мн.: Наука и техника, 1982. -262 с.

  36. Сычев В.В. Дифференциальные уравнения термодинамики. -М.: Высшая школа, 1991. -224 с.

  37. Серебро В.С. Основы теории газовых процессов в литейной форме. -М.: Машиностроение, 1991. -208 с.

  38. Фельдман О.А. Microsoft Word для Windows 6.0. -М.: Евроиндекс ЛТД, 1994. - 176 с.

Соседние файлы в папке DIPLOM