
- •1 Техническое задание 6
- •2. Проектирование локальной сети 7
- •3 Проектирование беспроводной сети 802.11g 40
- •4 Оценка пропускной способности 69
- •5 Реализация проектируемой системы 72
- •6 Технико-экономическое обоснование работы 114
- •7 Организационно-экономическая часть 115
- •8 Безопасность и экологичность проектных решений. 121
- •Введение
- •1 Техническое задание
- •1.1 Наименование
- •1.2 Исходные данные
- •2. Проектирование локальной сети
- •2.1 Исходные данные
- •2.2 Архитектурная фаза проектирования
- •2.2.1 Кабельные каналы
- •2.2.2 Размещение оборудования
- •2.3 Телекоммуникационная фаза проектирования
- •2.4 Выбор оборудования
- •2.4.1 Требования к серверу:
- •2.5 Выбор сетевых программных средств
- •2.6 Выбор с учетом стоимости
- •2.7 Оптимизация и поиск неисправностей в работающей сети
- •2.8 Fast Ethernet
- •2.8.1 Структура Fast Ethernet
- •2.8.1.1 Подуровень управления логической связью (llc)
- •2.8.1.2 Заголовок snap
- •2.8.1.3 Подуровень согласования
- •2.8.1.4 Управление доступом к среде (mac)
- •2.8.2 Csma/ cd
- •2.8.3 Устройство физического уровня (phy)
- •2.8.5 Кабель utp категории 5(e)
- •2.8.6 Ограничения длины кабеля
- •Заключение
- •3 Проектирование беспроводной сети 802.11g
- •3.1 Что нужно учитывать при развертывании Wi-Fi сетей?
- •3.1.1 Сетевой аудит
- •3.1.2 Стандарты протокола 802.11
- •3.2 Физический уровень протокола 802.11g
- •3.2.1 Ортогональное частотное разделение каналов с мультиплексированием
- •3.2.2 Скоростные режимы и методы кодирования в протоколе 802.11g
- •3.2.3 Максимальная скорость передачи данных в протоколах 802.11b/g
- •3.3 Поведение мобильных узлов
- •3.3.1 Классификация беспроводного сетевого оборудования
- •3.3.2 Выбор оборудования для беспроводной сети
- •3.4 Ресурс точки доступа
- •3.5 Технология коллективного доступа в беспроводных сетях семейства 802.11g
- •3.5.1 Режим Ad Hoc
- •3.5.2 Режим Infrastructure Mode
- •3.6 Тестирование производительности беспроводной сети
- •3.6.1 Методика тестирования
- •3.6.2 Алгоритм тестирования
- •3.7 Защита беспроводной сети
- •3.8 Преимущества беспроводных сетей передачи данных
- •3.9 Недостатки беспроводных сетей передачи данных
- •Заключение
- •Моделирование беспроводной локальной сети в условиях высокой нагрузки
- •4 Оценка пропускной способности
- •5 Реализация проектируемой системы
- •5.1 Основные компоненты системы
- •5.1.1 Установка и настройка беспроводной точки доступа tew-610apb
- •5.1.2 Использование режима скрытого идентификатора сети
- •5.1.3 Настройка шифрования и аутентификации пользователей
- •5.2 Настройка беспроводных адаптеров пользователей
- •5.2.1 Настройка с использованием утилиты Intel proSet/Wireless
- •5.2.2 Настройка с использованием клиента Microsoft
- •5.3 Установка и настройка сервера vpn
- •5.3.1 Создание интерфейса соединения по запросу
- •5.3.2 Создание статического маршрута
- •5.3.3 Конфигурирование системы главного офиса
- •5.4 Установка и настройка сервера Citrix Metaframe xp
- •5.4.1 Введение в сервер приложений Citrix MetaFrame xp
- •5.4.2 Особенности MetaFrame
- •5.4.3 Установка Citrix Metaframe
- •5.5 Настройка сервера
- •5.5.1 Подключение консоли
- •5.6 Конфигурирование менеджера загрузки
- •5.6.1 Установка клиента Win32
- •5.6.2 Настройка клиента Win32
- •6 Технико-экономическое обоснование работы
- •7 Организационно-экономическая часть
- •7.1 Организационная часть.
- •7.2 Экономическая часть.
- •7.2.1 Расчет заработной платы
- •7.2.2Расчет экономической эффективности
- •8 Безопасность и экологичность проектных решений.
- •8.1 Цель и решаемые задачи.
- •8.2 Опасные и вредные факторы при работе с пэвм.
- •8.3 Характеристика объекта исследования.
- •8.4 Обеспечение требований эргономики и технической эстетики.
- •8.4.1.1 Планировка помещения и размещение оборудования.
- •8.4.1.2 Эргономические решения по организации рабочего места пользователей пэвм.
- •Основные размеры стула для пользователя пэвм.
- •8.4.1.3 Цветовое оформление помещения.
- •8.4.2. Обеспечение оптимальных параметров воздуха рабочих зон.
- •8.4.2.1 Нормирование параметров микроклимата.
- •Фактические нормы микроклимата.
- •8.4.2.2 Нормирование уровней вредных химических веществ.
- •Характеристика вредных веществ, содержащихся в воздухе служебных помещений.
- •8.4.2.3 Нормирование уровней аэроионизации.
- •Уровни ионизации помещений при работе на вдт и пэвм.
- •8.4.3. Создание рационального освещения.
- •8.4.4. Защита от шума.
- •Уровни звука, эквивалентные уровни звука и уровни звукового давления в октавных полосах частот.
- •8.4.5. Обеспечение режимов труда и отдыха.
- •8.4.6. Обеспечение электробезопасности.
- •8.4.7. Защита от статического электричества.
- •8.4.8. Обеспечение допустимых уровней эмп.
- •Временные допустимые уровни эмп, создаваемые пэвм на рабочих местах (СанПиН 2.2.2/2.4.1340-03).
- •8.4.9. Обеспечение пожаробезопасности.
- •Расчеты.
- •Список сокращений
- •Список литературы
3.2.3 Максимальная скорость передачи данных в протоколах 802.11b/g
Как было показано, максимальная скорость, определяемая протоколом 802.11b, составляет 11 Мбит/с, а для протокола 802.11g — 54 Мбит/с.
Однако следует четко различать полную скорость передачи и полезную скорость передачи. Дело в том, что технология доступа к среде передачи данных, структура передаваемых кадров, заголовки, прибавляемые к передаваемым кадрам на различных уровнях модели OSI, — все это предполагает наличие достаточно большого объема служебной информации. Вспомним хотя бы наличие охранных интервалов при использовании OFDM-технологии. В результате полезная или реальная скорость передачи, то есть скорость передачи пользовательских данных, всегда оказывается ниже полной скорости передачи.
Более того, реальная скорость передачи зависит и от структуры беспроводной сети. Так, если все клиенты сети используют один и тот же протокол, например 802.11g, то сеть является гомогенной и скорость передачи данных в такой сети выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g, которые используют OFDM-кодирование. Поэтому с целью обеспечения совместного доступа к среде передачи данных клиентов, использующих различные типы модуляции, в подобных смешанных сетях точки доступа должны отрабатывать определенный механизм защиты. В результате использования механизмов защиты в смешанных сетях реальная скорость передачи становится еще меньше.
Кроме того, реальная скорость передачи данных зависит и от используемого протокола (TCP или UDP) и от размера длины пакета. Естественно, что протокол UDP предусматривает более высокие скорости передачи.
3.3 Поведение мобильных узлов
3.3.1 Классификация беспроводного сетевого оборудования
Беспроводное сетевое оборудование предназначено для передачи по радиоканалам информации (данных, телефонии, видео и др) между компьютерами, сетевыми и другими специализированными устройствами.
С начала 1990-х годов стали активно применяться устройства с кодовой (цифровой) модуляцией радиосигнала. Кодовая модуляция радиосигнала приводит к расширению его спектра и снижению его амплитуды до уровня шумов. Поэтому такие устройства получили название широкополосных шумоподобных систем (ШПС). Технология широкополосной беспроводной связи гарантирует высокое качество и надежность коммуникаций, устойчивость к индустриальным помехам и погодным условиям. Высокая эффективность применения таких систем привела к революционным изменениям в радиосвязи и возможности построения эффективных и надежных беспроводных сетей самого различного назначения.
На рис.2.14 представлена классификация оборудования ШПС и беспроводных сетей, которые строятся на его основе.
Рис. 2.14 Классификация беспроводного оборудования
Современное состояние беспроводной связи определяется ситуацией со стандартом IEEE 802.11. Разработкой и совершенствованием стандарта занимается рабочая группа по беспроводным локальным сетям (Working Group for Wireless Local Area Networks) комитета по стандартизации Института Инженеров Электротехники и Электроники (Institute of Electrical and Electronic Engineers, IEEE) под председательством Вика Хэйса (Vic Hayes) из компании Lucent Technologies. В группе около ста членов с решающим и около пятидесяти с совещательным голосом; они представляют практически всех изготовителей оборудования, а также исследовательские центры и университеты. Четыре раза в год группа собирается на пленарные заседания и принимает решения по совершенствованию стандарта.
Есть несколько типов беспроводных стандартов: 802.11a, 802.11b и 802.11g. В соответствии с этими стандартами существуют и различные типы оборудования. Стандарты беспроводных сетей семейства 802.11 отличаются друг от друга прежде всего максимально возможной скоростью передачи. Так, стандарт 802.11b подразумевает максимальную скорость передачи до 11 Мбит/с, а стандарты 802.11a и 802.11g – максимальную скорость передачи до 54 Мбит/с. Кроме того, в стандартах 802.11b и 802.11g предусмотрено использование одного и того же частотного диапазона – от 2,4 до 2,4835 ГГц, а стандарт 802.11a подразумевает применение частотного диапазона от 5,15 до 5,35 ГГц.
Оборудование стандарта 802.11a, в силу используемого им частотного диапазона, не сертифицировано в России.
Следует учесть, что стандарт 802.11g полностью совместим со стандартом 802.11b, то есть стандарт 802.11b является подмножеством стандарта 802.11g, поэтому в беспроводных сетях, основанных на оборудовании стандарта 802.11g, могут также работать клиенты, оснащённые беспроводным адаптером стандарта 802.11b. Верно и обратное – в беспроводных сетях, основанных на оборудовании стандарта 802.11b, могут работать клиенты, оснащённые беспроводным адаптером стандарта 802.11b. Впрочем, в таких смешанных сетях скрыт один подводный камень: если мы имеем дело со смешанной сетью, то есть с сетью, в которой имеются клиенты как с беспроводными адаптерами 802.11b, так и с беспроводными адаптерами 802.11g, то все клиенты сети будут работать по протоколу 802.11b. Более того, если все клиенты сети используют один и тот же протокол, например 802.11b, то данная сеть является гомогенной, и скорость передачи данных в ней выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g. Поэтому для того, чтобы обеспечить совместный доступ к среде передачи данных клиентов, использующих различные протоколы, в подобных смешанных сетях точки доступа должны отрабатывать определённый механизм защиты. Не вдаваясь в подробности реализации данных механизмов, отметим лишь, что в результате применения механизмов защиты в смешанных сетях реальная скорость передачи становится ещё меньше.
Поэтому при выборе оборудования для беспроводной сети стоит остановиться на оборудовании одного стандарта. Протокол 802.11b сегодня является уже устаревшим, да и реальная скорость передачи данных при использовании данного стандарта может оказаться неприемлемо низкой. Так что оптимальный выбор – оборудование стандарта 802.11g.