
- •1. Программирование.
- •1.1. Программное обеспечение. Основные этапы решения задач на эвм. Жизненный цикл программного средства
- •Программирование:
- •Каскадная модель.
- •Характеристика объектно-ориентированного программирования.
- •Использование инкапсуляции в ооп.
- •Использование наследования объектов в ооп.
- •Использование полиморфизма в ооп.
- •2. Математическая логика и теория алгоритмов.
- •2.1. Логические операции. Таблицы истинности.
- •2.2. Логика высказывани и предикатов.
- •Интуитивное и формальное определение алгоритма.
- •Теория сложности в теории алгоритмов.
- •Организация эвм и систем.
- •Принцип программного управления
- •Структуры эвм и вычислительных систем.
- •Структуры вычислительных машин
- •Структуры вычислительных систем.
- •Cisc и risc процессоры
- •Иерархическая система памяти эвм. Общие сведения и классификация памяти эвм.
- •Классификация зу по функциональному назначению (иерархия запоминающих устройств)
- •Классификация зу по принципу организации.
- •Вычислительные системы (вс). Уровни параллелизма. Классификация вс Флинна. Закон Амдала.
- •4. Операционные системы.
- •Определение операционной системы. Функции ос.
- •Классификация ос.
- •Средства синхронизации и взаимодействия процессов.
- •Файловая система.
- •Сегментно-страничное распределение памяти.
- •Страничное распределение памяти
- •Сегментное распределение памяти.
- •Сегментно-страничное распределение.
- •5. Базы данных.
- •База данных. Субд.
- •По модели данных:
- •По степени распределенности:
- •По способу доступа к бд:
- •Модели данных.
- •Реляционная модель данных.
- •Нормальные формы.
- •2) Вторая нормальная форма.
- •3) Третья нормальная форма.
- •Физическая организация данных.
- •6. Компьютерная графика.
- •Растровые (матричные) изображения.
- •Векторные модели изображений.
- •Представление геометрических моделей в программе и базе данных.
- •Графические библиотеки
- •Информационные технологии.
- •Информационная технология как составная часть информатики.
- •Базовая ит. Концептуальный уровень.
- •Структура базовой ит. Логический уровень.
- •Базовая ит. Физический уровень. Преобразование информации в данные.
- •Графические модели ит.
- •8. Сети эвм и телекоммуникации.
- •Структура и характеристики вычислительных сетей.
- •Топологии вычислительных сетей
- •Кольцо.
- •Архитектура сетей Ethernet.
- •Стандарт 10BaseT
- •Стандарт 10Base2
- •Стандарт 10Base5
- •8.4. Сети 802.11
- •Режимы работы 802.11
- •8.5. Сетевые операционные системы.
Кольцо.
При топологии “кольцо” компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии “шина”, здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который “хочет” передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.
Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.
После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приема данных. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (до тысячи и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).
Достоинства
Простота установки;
Практически полное отсутствие дополнительного оборудования;
Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
Недостатки
Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
Сложность конфигурирования и настройки;
Сложность поиска неисправностей.
Применение: волоконно-оптические сети, Token Ring (IBM).
Архитектура сетей Ethernet.
Ethernet – пакетная технология передачи данных преимущественно локальных компьютерных сетей. Является самым распространенным на сегодняшний день стандартом локальных сетей.
Ethernet в основном описывается стандартами IEEE группы 802.3.
В зависимости от типа физической среды передачи данных стандарт IEEE 802.3 имеет различные модификации:
10Base5 (толстый коаксиальный кабель);
10Base2 (тонкий коаксиальный кабель);
10Base-Т (витая пара);
10Base-F (оптоволоконный кабель).
В основе Ethernet лежат следующие технологии:
В качестве физической топологии передачи данных могут быть использованы топологии шины, звезды и дерева;
В качестве логической топологии используется топология «шина»;
Метод доступа к среде - CSMA/CD;
Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код;
Скорости передачи данных – 10, 100 и 1000 Мбит/с.