Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборка_ответы.docx
Скачиваний:
19
Добавлен:
28.09.2019
Размер:
990.13 Кб
Скачать

6. Компьютерная графика.

    1. Растровые (матричные) изображения.

Для представления графической информации на двумерной плоскости (например, экране монитора, странице книги и т.п.) в вычислительной технике применяются два основных подхода: растровый и векторный.

При векторном подходе графическая информация описывается как совокупность неких абстрактных геометрических объектов, таких как прямые, отрезки, кривые, прямоугольники и т.п.

Растровая графика же оперирует растровыми изображениями. Растровое изображение — изображение, представляющее собой матрицу пикселей или цветных точек (обычно прямоугольную).

Важными характеристиками изображения являются:

  1. количество пикселей — разрешение. Может указываться отдельно количество пикселей по ширине и высоте (1024*768, 640*480,…) или же, редко, общее количество пикселей (часто измеряется в мегапикселях). При этом следует различать: разрешение оригинала; разрешение экранного изображения; разрешение печатного изображения;

  2. количество используемых цветов или глубина цвета;

  3. цветовое пространство (цветовая модель) RGB, CMYK и др.

По количеству цветов изображения могут быть:

  • Двухцветные (бинарные) – 1 бит на пиксел. Среди двухцветных чаще всего встречаются черно–белые изображения;

  • Полутоновые – градации серого или иного цвета. Например, 256 града­ций (1 байт на пиксел);

  • Цветные изображения. От 2 бит на пиксел и выше. Глубина цвета 16 бит на пиксел (65 536 цветов) получила название High Со1ог, 24 бит на пиксел (16,7 млн цветов) – True Со1ог. В компьютерных графических системах используют и большую глубину цвета – 32, 48 и более бит на пиксел.

Цвет любого пиксела растрового изображения запоминается с помощью комбинации битов. Чем больше битов для этого используется, тем больше оттенков цветов можно получить. Под градацию яркости обычно отводится 1 байт (256 градаций), причем 0 – черный цвет, а 255 – белый (максимальная интенсивность).

Растр – это порядок расположения точек (растровых элементов). Растр, элементами которого являются квадраты, называется прямоугольным, именно такие растры наиболее часто используются.

Растровое представление является естественным в тех случаях, когда нам не известна дополнительная информация об изображаемых объектах (например, цифровым фотоаппаратом можно снимать изображения произвольного содержания).

Достоинства растровых изображений:

  • Распространённость — растровая графика используется сейчас практически везде: от маленьких значков до плакатов.

  • Высокая скорость обработки сложных изображений, если не нужно масштабирование.

  • Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы, матричные и струйные принтеры, цифровые фотоаппараты, сканеры.

Недостатки растровых изображений:

  • Большой размер файлов с простыми изображениями;

  • Невозможность идеального масштабирования;

  • Невозможность вывода на печать на плоттер.

    1. Векторные модели изображений.

Векторная графика — способ представления объектов и изображений в компьютерной графике, основанный на использовании геометрических примитивов, таких как точки, линии, сплайны и многоугольники. Термин используется в противоположность к растровой графике, которая представляет изображение как матрицу фиксированного размера, состоящую из точек (пикселей) со своими параметрами.

Как правило, векторное изображение представляет собой набор геометрических примитивов, описываемых их основными параметрами.

Сферы применения векторной графики очень широки. Широко используется векторное представление шрифтов. Векторные модели широко применяются в САПР. Они строятся на векторах, занимающих часть пространства в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество – требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление, а главное – высокую точность позиционирования и представления данных.

Векторным можно назвать только способ описания изображения, а само изображение для нашего глаза всегда растровое. Таким образом, задачами векторного графического редактора являются растровая прорисовка графических примитивов и предоставление пользователю сервиса по изменению параметров этих примитивов. Все изображение представляет собой базу данных примитивов и параметров макета (размеры холста, единицы измерения и т. д.).

Преимущества векторной модели изображений:

  1. Размер, занимаемой описательной частью, не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации, описать сколько угодно раз большой объект файлом минимального размера;

  2. В связи с тем, что информация об объекте хранится в описательной форме, можно бесконечно увеличить графический примитив;

  3. Параметры объектов хранятся и могут быть легко изменены. Также это означает что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка;

  4. При увеличении или уменьшении объектов толщина линий может быть задана постоянной величиной, независимо от реального контура.

Фундаментальные недостатки векторной графики.

  • Не каждый объект может быть легко изображен в векторном виде — для подобного оригинальному изображению может потребоваться очень большое количество объектов и их сложности, что негативно влияет на количество памяти, занимаемой изображением, и на время для его отображения

  • Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет — векторизация растра требует значительных вычислительных мощностей и времени и не всегда обеспечивает высокое качества векторного рисунка.

    1. 3D-изображения. Геометрия проецирования. Однородные координаты.

Трёхмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ.

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

  1. моделирование — создание трёхмерной математической модели сцены и объектов в ней;

  2. рендеринг (визуализация) — построение проекции в соответствии с выбранной физической моделью. Рендеринг преобразует трёхмерную векторную структуру данных в плоскую матрицу пикселов. Этот шаг часто требует очень сложных вычислений;

  3. вывод полученного изображения на устройство вывода — дисплей или принтер.

Для того чтобы увидеть на плоскости монитора трехмерное изображение, нужно уметь задать способ отображения трехмерных точек в двумерные. Способ перехода от трехмерных объектов к их изображениям на плоскости будем называть проекцией. Проекция трехмерного объекта (представленного в виде совокупности точек) строится при помощи прямых проекционных лучей, называемых проекторами, проходящих через каждую точку объекта, пересекая картинную плоскость, образуя проекцию.

Проекция (лат. projectio — выбрасывание вперёд) — изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости.

Термин проекция также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод.

Проекционный метод изображения предметов основан на их зрительном представлении. Если соединить все точки предмета прямыми линиями (проекционными лучами) с постоянной точкой О (центр проекции), в которой предполагается глаз наблюдателя, то на пересечении этих лучей с какой-либо плоскостью получается проекция всех точек предмета. Соединив эти точки прямыми линиями в том же порядке, как они соединены в предмете, получим на плоскости перспективное изображение предмета или центральную проекцию.

Если центр проекции бесконечно удалён от картинной плоскости, то говорят о параллельной проекции, а если при этом проекционные лучи падают перпендикулярно к плоскости — то об ортогональной проекции.

Проекция широко применяется в инженерной графике, архитектуре, живописи и картографии. Изучением проекций и методов проектирования занимается начертательная геометрия.

Однородные координаты — координаты, обладающие тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же число.

Однородными координатами вектора (х, у, z) является тройка чисел (x', y', z', w), где х = х' / w, у = y' / w, z = z' / w, а w — некоторое вещественное число (случай, когда w = 0 является особым).

Данные координаты не позволяют однозначно задать точку пространства. Например, (1, 1, 1, 1) и (2, 2, 2, 2) задают одну и ту же точку (1, 1, 1). При переходе к однородным координатам для точки с координатами (x, y, z) предлагается взять набор (x, y, z, 1). В процессе преобразований координата w может меняться. Обратный переход к декартовым координатам осуществляется посредством деления на w-координату.