Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_vse.docx
Скачиваний:
11
Добавлен:
27.09.2019
Размер:
473.62 Кб
Скачать

34. Уравнение Шредингера. Квантовые состояния.

Уравнение Шредингера . Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид , (1) где ћ=h/(2), т—масса частицы, —оператор Лапласа + i — мнимая единица, U (х, у, z, t) — потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z, t) — искомая волновая функция частицы.

Уравнение (1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая — только времени, причем зависимость от времени выражается множителем , так что , (2) где Е — полная энергия частицы, постоянная в случае стационарного поля. Подставляя (2) в (1) и деля на общий множитель придем к уравнению, определяющему функцию : , (3). Уравнение (3) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы.

35. Микрочастица в одномерной потенциальной яме.

П роведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

г де l — ширина «ямы», а энергия отсчитывается от ее дна.

У равнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде

                                       

П о условию задачи, частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения за пределами «ямы» равна нулю. На границах «ямы» (при х=0 и х=1) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные усло­вия в данном случае имеют вид: (220.2)

В пределах «ямы» (0  х l) уравнение Шредингера сведется к уравнению

и ли (220.3)

г де

Общее решение дифференциального уравнения (220.3):

Т ак как по (220.2) (0)=0, то В=0. Тогда

У словие (220.2) (l)=A sin kl = 0 выполняется только при kl = n, где n — целые числа, т. е. необходимо, чтобы (220.6)

Из выражений (220.4) и (220.6) следует, что (220.7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Еn, зависящих от целого числа п. Следовательно, энергия Еn частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т.е. квантуется. Квантованные значения энергии Еn называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Еn, или, как говорят, частица находится в квантовом состоянии n.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]