- •1. Множества. Способы задания множеств.
- •2. Операции над множествами.
- •3. Перестановки. Размещение. Сочетание.
- •4. Множества с повторениями
- •5.Основные понятия математической логики.
- •6.Основные логические операции логики высказываний
- •7. Логические формулы
- •9.Закон поглощения:
- •9. Виды событий. Предмет теории вероятности.
- •10. Виды случайных событий.
- •11. Классическое определение вероятности . Свойства.
- •12.Частота событий. Статистическое определение вероятности.
- •13.Теорема сложений вероятности. ( не знаю надо доказательства или нет)
- •14. Теорема умножения вероятностей
- •15. Обобщение теорем сложения и умножения
- •16.Виды случайных величин
- •19. Геометрическое распределение.
- •20. Гипергеометрическое распределение.
- •21. Нормальное распределение (закон Гаусса).
- •22. Формула Пуассона.
- •23. Математические операции над случайными величинами
- •24. Числовые характеристики дискретных случайных величин:
- •25. Предмет математической статистики.
- •26. Генеральная и выборочная совокупность.
- •27. Повторная и бесповторная выборки. Репрезентативная выборка.
- •28. Способы отбора
- •29. Интервальный статистический ряд. Формула Стерджеса.
- •30.Статистическое распределение выборки.
- •31. Эмпирическая функция распределения дсв
- •32. Графическое изображение статистического наблюдения.
- •33. Гистограмма и полигон частот.
1. Множества. Способы задания множеств.
Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).
Возможны различные способы задания множеств. Один из них состоит в том, что дается полный список элементов, входящих в это множество.
Пример:
Множество учеников данного класса определяется их списком в классном журнале, множество всех стран на земном шаре - их списком в классном журнале, множество всех костей в человеческом теле - их списком в учебнике анатомии.
Но этот способ применим только к конечным множествам, но и то не ко всем.
Пример:
Хотя множество всех рыб в океане конечно, вряд ли его можно задать списком.
В тех случаях, когда множество нельзя задать при помощи списка, его задают путем указания некоторого характеристического свойства. Свойство является характеристическим для некоторого множества, если этому множеству принадлежат в точности те элементы, которые обладают данным свойством.
Пример:
Свойство "быть квадратом целого числа" задает (бесконечное) множество всех квадратов целых чисел.
Задание множеств их характеристическим свойством иногда приводит к осложнениям. Может случиться, что два различныххарактеристических свойства задают одно и то же множество, т.е всякий элемент, обладающий одним свойством, обладает и другим, и обратно.
Пример:
Множество толстокожих животных, имеющих два бивня, совпадает со множеством толстокожих животных, имеющих хобот, - это множество слонов.
Итак, множества можно задавать двумя способами:
Перечислением элементов множества;
Описанием общего (характеристического) свойства, объединяющего элементы.
2. Операции над множествами.
Бинарные операции
Ниже перечислены основные операции над множествами:
пересечение:
объединение:
Если множества и не пересекаются: , то их объединение обозначают также: .
разность (дополнение):
симметрическая разность:
Декартово или прямое произведение:
Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.
Унарные операции
Абсолютное дополнение:
Операция дополнения подразумевает некоторый универсум (универсальное множество , которое содержит ):
Относительным же дополнением называется А\В (см.выше):
Мощность множества:
Результатом является кардинальное число (для конечных множеств — натуральное).
Множество всех подмножеств (булеан):
Обозначение происходит из того, что в случае конечных множеств.
3. Перестановки. Размещение. Сочетание.
Размещения.
Размещениями из элементов по называются соединения, которые можно образовать из элементов, собирая в каждое соединение по элементов, при этом соединения могут отличаться друг от друга как самими элементами, так и порядком их расположения.
Например, из 3 элементов (a,b,c) по 2 можно образовать следующие размещения:
ab, ac, ba, bc, ca, cb.
Число всех возможных размещений, которые можно образовать из элементов по , обозначается символом и вычисляется по формуле:
,
(всего k множителей).
Пример:
Перестановки.
Перестановками из n элементов называются соединения, каждое из которых содержит все n элементов, отличающихся поэтому друг от друга только порядком расположения элементов.
Например, из 3 элементов (a,b,c) можно образовать следующие перестановки:
abc, bac, cab, acb, bca, cba.
Число всех возможных перестановок, которые можно образовать из n элементов, обозначается символом
(Произведение n первых целых чисел обозначается символом “n!” и читается “n факториал”)
Пример:
Сочетания.
Сочетаниями из n элементов по k называются соединения, которые можно образовать из n элементов, собирая в каждое соединение k элементов; при этом соединения отличаются друг от друга только самими элементами (различие порядка их расположения во внимание не принимается).
Например, из 3 элементов (a,b,c) по 2 можно образовать следующие сочетания:
ab, ac, bc.
Число всех возможных сочетаний, которые можно образовать из n элементов по k, обозначается символом :
(В числителе и знаменателе по k множителей).
Пример: