Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все в куче.docx
Скачиваний:
2
Добавлен:
26.09.2019
Размер:
176.01 Кб
Скачать

Билет №3 «Фотометрические величины.Интенсивность,световой поток,поверхностная яркость,освещенность»

1. Энергетические величины. Поток излучения Фе

(Вт).

Энергетическая светимость (нзлучательность) Re,

т. е. представляет собой поверхностную плотность потока излучения.

(Вт/м2).

Энергетическая сила света (сила излучения) Ie

(Вт/ср).

Энергетическая яркость (лучистость) Вe

(Вт/(ср×м2)).

Энергетическая освещенность (облученность) Ее (Вт/м2).

2. Световые величины..

Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью).

Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм = 1 кд-ср).

Светимость R определяется соотношением

Единица светимости — люмен на метр в квадрате (лм/м2).

Яркость Bv

(кд/м2).

Единица освещенности (1 лм = 1 лм/м2).

Освещенность Е — величина, равная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Билет №4 «Принцип Гюйгенса.Когерентные волны.Интерференция света.Оптическая разность хода»

  • Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде — эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами — упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t. Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления.

Теория Гюйгенса не могла объяснить также физической природы наличия разных цветов.

Билет №5 «Полосы равного наклона и равной толщины.Кольца Ньютона.Инерферометры Майкельсона и Фабри-Перо»

  • Полосы равного наклона (интерференция от плоскопараллельной пластинки). Ин­терференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.

  • Интерференционные полосы, возникающие в резуль­тате интерференции от мест одинаковой толщины, называются полосами равной толщины.

полосы равной толщины локализованы вблизи поверхности клина.

  • Кольца Ньютона. Кольца Ньютона, являющиеся классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны (рис. 252). Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падения света имеющие вид концентрических окружностей.

Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить l0 и, наоборот, по известной l0 найти радиус кривизны R линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны l0 (см. (174.2)). Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были проведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l0/2, т.е. максимумам интерфере­нции в отраженном свете соответствуют минимумы в проходящем, и наоборот.