
- •2.Химический элемент,атом,молекула,ион и.Т.Д
- •3.Химическое соединение,простые вещества,сложные вещества,типы химических соединений.
- •4.Химические соединения,типы солей,свойства и способы получения.
- •Типы солей
- •5.Классификация химических соединений.Оксиды.Свойства и способы получения.
- •Характерные свойства
- •Классификация
- •Классификация
- •Химические свойства [править]Основные оксиды
- •[Править]Кислотные оксиды
- •[Править]Амфотерные оксиды
- •[Править]Получение
- •6.Химические соединения.Типы гидроксидов.Свойства и способы получения
- •Классификация
- •1. Кислотные и основные гидроксиды. Соли
- •2. Кислотные и оснόвные оксиды
- •4. Бинарные соединения
- •7.Кислые соли.Свойства и способы получения.Примеры
- •Получение
- •Химические свойства
- •Двойные и смешанные соли
- •8.Типы химический реакций
- •9.Основные газовые законы.Законы хим.Эквивалентов
- •Закон эквивалентов
- •10.Строение атома.Планетарная модель атома резерфорда.Постулаты бора
- •Постулаты
- •[Править]Уровни энергии
- •11.Электронные строения атома.Квантовые энергии.Положение электрона в атоме в соотв. С квантовыми числами. Электронное строение атома
- •12.Квантовые числа.Физический смысл каждого из квантовых чисел.Принцип паули
- •Строение атомов и принцип Паули
- •13.Химические свойства атомов.Энергия ионизации.Сродство к электрону и эо.Изменение по группам и периодам
- •[Править]Масса
- •[Править]Размер
- •[Править]Радиоактивный распад
- •[Править]Магнитный момент
- •[Править]Энергетические уровни
- •[Править]Валентность
- •14.Строение электронных оболочек.Правила заполнения электронных орбиталей
- •Оболочки
- •15.Строение атома и систематика хим.Элементов.Периодический закон
- •Субатомные частицы
- •[Править]Электроны в атоме
- •[Править]Свойства атома
- •[Править]Масса
- •[Править]Размер
- •[Править]Радиоактивный распад
- •[Править]Магнитный момент
- •[Править]Энергетические уровни
- •[Править]Валентность
- •Определения
- •15.Квантовые числа.Физический смысл главного и орбитального квантовых чисел
- •16.Распределение электронов в атомах в соответствии с прицнипом паули.Правило хунда,и клечковского.
- •Формулировка правила Клечковского
- •19.Смотри другие билеты,там ответ
- •20.Квантовая модель строения атома.Квантовые числа.Понятия энергетического уровня и электронной оболочки
- •Электронные энергетические уровни
- •Внутриядерные энергетические уровни
- •21.Полярность химической связи.Полярные и неполярные молекулы.Дипольный момент
[Править]Валентность
Основная статья: Валентность
Внешняя электронная оболочка атома, если она не полностью заполнена, называется валентной оболочкой, а электроны этой оболочки называются валентными электронами. Число валентных электронов определяет то, как атом связывается с другими атомами посредством химической связи. Путём образования химических связей атомы стремятся заполнить свои внешние валентные оболочки.[41]
Чтобы показать повторяющиеся химические свойства химических элементов, их упорядочивают в виде периодической таблицы. Элементы с одинаковым числом валентных электронов формируют группу, которая изображается в таблице в виде столбца (движение по горизонтальному ряду соответствуют заполнению валентной оболочки электронами). Элементы, находящиеся в самом правом столбце таблицы, имеют полностью заполненную электронами внешнюю оболочку, поэтому они отличаются крайне низкой химической активностью и называются инертными или благородными газами.[42][43]
Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.
Определения
Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».[1]
С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).
В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».
Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.
Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».
Структура хим.элементов.
Наиболее распространёнными являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.
Ниже приведён длинный вариант (длиннопериодная форма), утверждённый Международным союзом теоретической и прикладной химии (IUPAC) в качестве основного.
Короткая форма таблицы, содержащая восемь групп элементов[3], была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации[4].
В 1970 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы. Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона[5][6]. Сегодня существуют несколько сотен вариантов таблицы, при этом учёные предлагают всё новые варианты[7].