Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovykh_i_optoelektronnykh_priborov.doc
Скачиваний:
177
Добавлен:
26.09.2019
Размер:
5.26 Mб
Скачать

2.2Неодимовые лазеры

Неодимовые лазеры являются самыми распространенными из твердотельных лазеров. В них активной средой является кристалл иттрий – алюминиевого граната (Y3Al5O12), в котором часть ионов Y3+ заменена ионами Nd3+ (ИАГ: Nd3+). Также используется фосфатное или силикатное стекло, легированное ионами Nd3+ (стекло: Nd3+). Типичные уровни легирования для кристалла ИАГ: Nd3+ составляют ~ 1 ат. %, а уровни легирования стекла с Nd3+ ~ 3 вес.% Nd2 O3.

Обобщенная схема энергетических уровней Nd3+, характерная для гранатовых и стеклянных матриц, представлена на рис.2.2.

Рис.2.2.Обобщеная схема уровней энергии иона Nd3+ в матрице.

Накачка переводит ионы Nd3+ из основного состояния 4I9/2 в несколько относительно узких полос, играющих роль верхнего уровня. Эти полосы образованы рядом перекрывающихся возбужденных состояний, их положения и ширины отличаются от матрицы к матрице. Из полос накачки осуществляется быстрая передача энергии возбуждения на метастабильный уровень 4F3/2. Время жизни этого уровня составляет 0,2 мс в ИАГ и 0,7 мс в стекле. Наибольшей вероятностью обладает лазерный переход 4F3/24I11/2 (=1,06 мкм). Возможно получить генерацию на переходе 4F3/24I13/2 с =1,32 мкм. Энергетическая щель между состояниями 4I11/2 и 4I9/2, равная примерно 2∙103 см-1, обеспечивает четырехуровневый характер генерации неодимового лазера.

2.3Устройство твердотельного лазера

На рис.2.3 показано устройство и составные части типичного твердотельного лазера. Лазер состоит из трех основных частей: излучателя (ИЗ), блока электропитания (БП) с системой управления (СУ) и блока охлаждения (БО).

Рис.2.3. Устройство и составные части т/т лазера:

ИЗ-излучатель,

БО-блок охлаждения,

БП-блок питания с системой управления (СУ)

Излучатель включает в себя активный элемент (I), систему накачки, состоящую из лампы накачки (2) и осветителя (3). Все элементы собраны в металлическом кожухе (4), через который прокачивается жидкость, (дистиллированная вода из БО). В излучатель входят также зеркала З1 и З2, образующие открытый резонатор лазера. Зеркала могут устанавливаться на отдельных юстируемых держателях, либо в единой конструкции излучателя. Выход БП подсоединяется к электродам лампы накачки для подачи высокого напряжения от источника накачки.

2.4Система оптической накачки

Для возбуждения твердотельного лазеров используется метод оптической накачки, а для его реализации необходимы достаточно интенсивные источники оптического излучения. Важно, чтобы основная часть излучаемой этими источниками энергии попадала в полосы поглощения активного элемента и тем самым эффективно использовалась для создания инверсной населенности в системе рабочих уровней. Для определения подходящих для этой цели источников накачки рассмотрим излучение абсолютно черного тела. Как известно, максимум излучения его лежит на длине волны max, определяемой законом смещения Вина: max=(В/Т) 10-4, где В = 3·107, Т - абсолютная температура, - в микрометрах.

Рис.2.4. Спектр излучения ксеноновой лампы накачки (сплошная линия);

спектр поглощения рубина (пунктирные линии).

Для примера рассмотрим рубин. Его полосы поглощения лежат в области 0,4 мкм и 0,56 мкм.

Из предыдущей формулы следует, что для эффективной накачки в этих полосах необходим источник с температурой 6500 К и 10000 К, соответственно. Эффективные температуры 5000-10000 К реализуются в излучении газоразрядных ламп. Характеристики таких ламп зависят от состава, давления газа, режима питания и т.д.. В импульсных твердотельных лазерах используются лампы с ксеноновым, а в непрерывных - с криптоновым наполнением. К.П.Д. лампы определяется как отношение излучаемой лампой световой энергии к электрической энергии, запасенной в питающей лампу конденсаторе, и составляет величину ~ 50%. Для повышения эффективности накачки лампу и активный элемент помещают в зеркальный или диффузный осветитель. Осветитель служит для концентрации энергии лампы накачки на поверхности активного элемента. На рис.2.5 показаны конструкции некоторых осветителей.

Рис.2.5. Схемы конструкций осветителей: а) цилиндрической формы б) эллиптической формы.

Поверхности зеркал бывают металлические (основным используемым материалом является алюминий) и диэлектрические (рис.2.6), которые наносятся на подложку. В диэлектрических зеркалах коэффициент

Рис. 2.6 Зеркало на основе многослойного диэлектрического покрытия.

показателя преломления диэлектрика n должно быть больше показателя преломления подложки n0 (n> n0). Подложка в основном изготовляется из стекла, кварца. При отражении от диэлектрического покрытия луч А претерпевает изменение фазы на ( = ). Изменение фазы луча В равно произведению пути, пройденному им в диэлектрическом покрытии, на волновое число: . Разность фаз лучей А и В равна , т.е. отраженные лучи находятся в фазе. Поэтому при отражении светового излучения от поверхности таких зеркал происходит его усиление.

Рис.2.7.Зависимость коэффициента

отражения зеркала от количества диэлектрических слоев.

Поверхности высоко отражающих лазерных зеркал обычно изготавливают методом нанесения многослойного диэлектрического покрытия на оптическую поверхность материала подложки. Количество таких слоев может достигать до 15. При этом максимальный коэффициент отражения зеркала может достичь до 0,98.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]