
- •1. Теорема о связи первообразных одной и той же функции. Определение неопределенного интеграла.
- •2. Взаимная обратность операций интегрирования и дифференцирования. Свойство линейности неопределенного интеграла.
- •3. Задачи о вычислении площади криволинейной трапеции и нахождении длины пути по известной скорости.
- •4. Определение определенного интеграла. Теорема существования (формулировка). Геометрический и механический смысл интеграла.
- •5. Свойства определенного интеграла.
- •10. Вычисление площади криволинейного сектора в полярных координатах.
- •11. Длина дуги кривой. Вычисление длины дуги графика функции.
- •12. Вычисление длины дуги кривой, заданной параметрически и в полярной системе координат.
- •13. Вычисление объемов с помощью определенного интеграла по известным площадям поперечных сечений.
- •14. Вычисление массы, статических моментов и координат центра тяжести неоднородной материальной нити.
- •15. Вычисление массы, статических моментов и координат центра тяжести однородной материальной пластины.
- •16. Несобственные интегралы с бесконечными пределами и от неограниченных функций. Определение и формула Ньютона-Лейбница. Исследование сходимости интегралов
- •Что такое дифференциальное уравнение и его решение ? Примеры задач, приводящих к дифференциальным уравнениям (задача о радиоактивном распаде и задача о колебании груза напружине).
- •Задача Коши и теорема Коши (формулировка) для дифференциального уравнения первого порядка. Общее решение дифференциального уравнения первого порядка
- •Линейные дифференциальные уравнения первого порядка, Метод вариации произвольной постоянной. Уравнения Бернулли.
- •Однородные дифференциальные уравнения первого порядка.
- •Задача Коши и теорема Коши для дифференциального уравнения порядка n (формулировка). Общее решение дифференциального уравнения.
- •Дифференциальные уравнения, допускающие понижение порядка
- •Линейные дифференциальные уравнения (второго поряка). Линейность пространства решений однородного уравнения.
- •Линейная зависимость и определитель Вронского.
- •11. Метод вариации произвольных постоянных для нахождения частного решения неоднородного линейного дифференциального уравнения второго порядка.
- •12. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Вывод характеристического уравнения. Общее решение в случае действительных различных корней.
- •13. Лоду с постоянными коэффициентами второго порядка. Фундаментальная система решений в случае совпадающих действительных корней и в случае комплексных корней характеристического уравнения
- •14. Неоднородные линейные дифференциальные уравнения с постоянными коэффициентами и специальной правой частью. Метод неопределенных коэффициентов (формулировка).
- •1. Определение преобразования Лапласа. Оригиналы и изображения. Изображения для единичной функции (Хевисайда) и показательной функции.
- •Общая схема решения линейных дифференциальных уравнений операционным методом.
Общая схема решения линейных дифференциальных уравнений операционным методом.
Пусть требуется найти частное решение х = х(t) линейного дифференциального уравнения с постоянными коэффициентами (для простоты, второго порядка)
(1) удовлетворяющего
начальным условиям
(2)
где x0, x'0 — заданные числа. Эта задача называется задачей Коши.
Пусть х = х(t)
— искомое решение задачи Коши. Как
обычно, обозначим изображения
1. Применим к уравнению (1) преобразование Лапласа, т. е. запишем равенство изображений левой и правой частей уравнения. По теореме о дифференцировании оригинала найдем изображения производных:
Получаем операторное
уравнение
Группируя
члены, операторное уравнение можно
переписать в виде
где—
характеристический
многочлен урав-нения (1),
зависит
только от правой части уравнения(1) , а
зависит
от начальных условий (2)
и не зависит от правой части.
2. Решаем операторное
уравнение и получаем операторное
решение
3. По изображению X = Х(р) находим оригинал х = х(t), который и является решением исходной задачи Коши.