Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие по электротехнике. СПО.doc
Скачиваний:
74
Добавлен:
25.09.2019
Размер:
5.76 Mб
Скачать

Занятие 9. Эдс и напряжение.

Чтобы обеспечить продвижение электрических зарядов вдоль электрической цепи, то есть создать электрический ток, необходима сила, которая бы двигала эти заряды.

Эта сила действует внутри источника и называется электродвижущая сила (ЭДС).

ЭДС численно равна разности потенциалов на полюсах источника.

Потенциалом j данной точки поля называется работа, которую затрачивает электрическое поле, когда оно перемещает положительную единицу заряда из данной точки поля в бесконечность.

Рис.9.1. Распределение потенциала вдоль электрической цепи.

Если переместить заряд из одной точки поля с потенциалом φ1 в точку с потенциалом φ2, то необходимо совершить работу

Величина, равная разности потенциалов называется напряжением.

Таким образом, наибольший потенциал будет у начала цепи (+ источника). (см. рис.9.1) Условно считается, что в проводе не расходуется электрическая энергия, поэтому

φ1 = φ2, и φ1 - φ2 =U1-2= 0,

При протекании тока через сопротивление R1 электрическая энергия источника тока превращается в тепловую энергию, нагревая резистор R1, и излучается в пространство. Поэтому потенциал φ3 будет меньше потенциала φ2, а разность потенциалов

φ2 – φ3 =U2-3 не равна нулю.

Напряжение U2-3 называется падением напряжения или напряжением на резисторе R1.

Чем ближе точка цепи к минусу источника, тем ниже ее потенциал. Таким образом, наименьший потенциал будет у конца электрической цепи (- источника)

Электродвижущая сила источника численно равна разности потенциалов на зажимах источника. Напряжением любых двух точек цепи является разность потенциалов в этих точках.

За нулевой потенциал принят потенциал Земли.

Занятие 10. Электрическое сопротивление

а) Электрическое сопротивление и электрическая проводимость.

Свойство материалов препятствовать прохождению через них электрического тока называется электрическим сопротивлением.

С другой стороны можно сказать, что не все материалы препятствуют прохождению через них электрического тока. Говорят, что такие материалы обладают хорошей электропроводностью.

Таким образом, электропроводность и электрическое сопротивление являются взаимообратными величинами.

Сопротивление проводника зависит от его геометрических размеров: его длины и площади поперечного сечения, а также материала, из которого изготовлен проводник..

Для проводников сопротивление прямо пропорционально длине и обратно пропорционально площади их поперечного сечения:

где:l — длина проводника; м.

s — площадь поперечного сечения; м2.

— удельное сопротивление, характеризующее электропроводность данного металла,

Ом * м.

Рис. 8.1. Алюминиевый проводник

Величина, обратная электрическому сопротивлению называется электрической проводимостью G.

Где: G – проводимость, См (сименс)

Удельная проводимость, величина, обратная удельному сопротивлению.

Удельное сопротивление различных проводников: (·10-6) [Ом·м]

Серебро 0,016

Медь 0,017

Алюминий 0,03

Вольфрам 0,05

Железо 0,13

Свинец 0,2

Никелин 0,42

Манганин 0,43

Константан 0,5

Ртуть 0,94

Нихром 1,1

Удельное сопротивление проводника зависит от температуры.

где: ро - удельное сопротивление при 0 градусов, t - температура, α - температурный коэффициент сопротивления ( т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)