
- •В. Прянишников: Теоретические основы электротехники: Курс лекций
- •Рабочая поурочная программа по дисциплине «Теоретические основы электротехники» ( Теория – 130 часов)
- •Тема 1 Электрическое поле и его характеристики (12 часов)
- •Тема 2. Физические процессы в электрических цепях (34 часа)
- •Тема 3 Магнитное поле и магнитные цепи. (18 часов)
- •Тема 4. Начальные сведения о переменном токе (10 часов)
- •Тема 5. Элементы и параметры цепей переменного тока (22 часа)
- •Тема 6. Трехфазные цепи переменного тока (16 часов)
- •Тема 7. Общие сведения об электрических установках (18 часов)
- •Модуль 1. Электрические цепи постоянного тока (24 часа)
- •Тема 1 Электрическое поле и его характеристики
- •Занятие 1. Электрическое поле
- •Занятие 2. Напряженность электрического поля.
- •Занятие 3 Потенциал электростатического поля и разность потенциалов.
- •Занятие 4 Закон Кулона
- •Занятие 5 Электрические конденсаторы
- •Занятие 6. Контрольная работа
- •Тема 2. Физические процессы в электрических цепях Занятие 7 Электрическая цепь
- •Занятие 8. Электрический ток
- •Занятие 9. Эдс и напряжение.
- •Занятие 10. Электрическое сопротивление
- •Удельное сопротивление различных проводников: (·10-6) [Ом·м]
- •Занятие 11. Закон Ома
- •Занятие 12 Контрольная работа
- •Занятие 13. Энергия и мощность электрического тока.
- •Занятие 14 Тепловое действие тока
- •Занятие 15. Аппараты управления
- •Занятие 16. Баланс мощностей
- •Занятие 18. Понятие об электрических схемах
- •Занятие 19. Задачи расчета электрических цепей.
- •Занятие 20. Законы Кирхгофа
- •Занятие 21 Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи
- •Занятие 22. Расчет электрических цепей
- •Б) Расчет электрических цепей с использованием законов Ома и Кирхгофа
- •Расчет разветвленной электрической цепи с несколькими источниками питания
- •В) Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
- •1) Основные определения
- •2) Графический метод расчета нелинейных цепей постоянного тока
- •Занятие 23 Контрольная работа №4 эт у23
- •Тема 3 Магнитное поле. И магнитные цепи. Занятие 24. Магниты и магнитное поле .
- •Занятие 25.Магнитные свойства веществ
- •Занятие 27. Основные законы магнитной цепи. Расчет простейших магнитных цепей
- •Занятие 28 Сила Ампера
- •Занятие 29 Электромагнитная индукция.
- •Занятие 30 Самоиндукция
- •Занятие 31 Взаимоиндукция
- •Тема 4. Электрические цепи переменного тока Занятие 33. Переменная эдс.
- •Занятие 34 Параметры переменного тока
- •Занятие 37 Контрольная работа эт у37
- •Тема 5. Элементы и параметры цепей переменного тока (22 часа) Занятие 38 . Активное сопротивление в цепи переменного тока.
- •Занятие 40 . Цепь переменного тока с емкостью
- •Занятие 41 Цепь с последовательным соединением rl и rc
- •Занятие 44 Резонанс напряжений
- •Занятие 45 Параллельное соединение l и c. Резонанс токов.
- •Занятие 46 Активная, реактивная и полная мощности.
- •Занятие 47 Коэффициент мощности
- •Занятие 48 Контрольная работа №7 эт у48
- •Тема 6. Трехфазные цепи переменного тока (16 часов) Занятие 49 Устройство трехфазного генератора.
- •Занятие 50 Соединение трехфазной цепи звездой.
- •Занятие 51 Соединение трехфазной цепи треугольником.
- •Занятие 52 Вращающееся магнитное поле.
- •Занятие 53 Принцип работы асинхронного двигателя.
- •Занятие 54 Индуктивно связанные элементы в цепи переменного тока.
- •Занятие 55 Трехфазный трансформатор
- •Тема 7. Общие сведения об электрических установках (18 часов) Занятие 57 . Назначение и классификация электрических машин.
- •Занятие 58 Конструкции электрических машин.
- •58.1. Устройство асинхронного двигателя.
- •Занятие 59 Электрические аппараты.
- •59.1.Классификация пуско-регулирующей аппаратуры
- •58.2. Устройство предохранителя
- •58.3.Устройство кнопок и выключателей
- •58.4.Конструкция теплового реле
- •58.5. Устройство магнитного пускателя
- •Занятие 59 Электрические системы.
- •Занятие 60 Электроснабжение предприятий и населенных пунктов.
- •А) типы осветительных установок
Тема 3 Магнитное поле. И магнитные цепи. Занятие 24. Магниты и магнитное поле .
а) Постоянные магниты
В отличие от электромагнитов, приобретающих магнитные свойства лишь при включении тока, постоянные магниты имеют эти свойства изначально и сохраняют их неограниченно долго.
П
роделаем
опыт с дугообразным магнитом,
Положим его в коробочку с мелкими
железными опилками. Встряхнем коробочку
и достанем магнит. Мы увидим, что опилки
прилипают не ко всей поверхности магнита,
а лишь к некоторым его частям – полюсам
магнита. Любой магнит имеет не менее
двух полюсов.
Рис.24.1. Опилки на полюсах магнита.
Рис.24.2. Ориентированный по сторонам горизонта магнит
Подвесим полосовой магнит на длинной нити так, чтобы он мог свободно поворачиваться. Когда качания магнита прекратятся, он обязательно расположится так, что один из его полюсов укажет в сторону северной части горизонта, а другой – в сторону южной. Поэтому полюсы магнита называются северным (N) и южным (S) полюсами.
П
однося
к подвешенному магниту второй магнит,
мы легко обнаружим, что их одноименные
полюса отталкиваются, а разноименные
– притягиваются. Этот опыт будет
выглядеть эффектнее, если вместо тяжелых
и неповоротливых полосовых магнитов
использовать две легкие магнитные
стрелки, свободно вращающиеся на
остриях..
Рис. 24.3. Ориентированные относительно друг друга магнитные стрелки
б) Магнитное поле проводника с током:
Рис.24.4. Тока в проводе нет Рис.24.5 Ток в проводе есть
В штативе закрепим провод, концы которого можно подключать к источнику тока. Рядом с проводом разместим магнитную стрелку от компаса, надетую на иглу.
Пока ток не включен, разместим приборы так, чтобы стрелка указывала на провод (рис.23.4)
При подключении концов провода к источнику постоянного тока стрелка "отвернется" от провода (рис.23.5).
Если магнитные стрелки отклоняются от первоначального направления, значит, в этих точках пространства действуют какие-то силы. Другими словами, в пространстве вокруг провода с током существует силовое поле. Это поле вокруг проводника с током называют магнитным полем.
Магнитное поле обнаруживается благодаря магнитным явлениям:
притяжению и отталкиванию проводов с токами или намагниченных тел,
действию проводника с током на магнитную стрелку,
электромагнитной индукции.
б) Магнитная индукция
Количественная оценка магнитной индукции:
Для оценки интенсивности магнитного поля введено понятие магнитной индукции. Магнитная индукция обозначается буквой В.
Магнитная индукция — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля.
Модулем вектора магнитной индукции является отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока в проводнике на длину этого участка.:
Где: В - магнитная индукция " Тесла" [ Тл ]
I - сила тока в проводнике, А
∆l – длина участка проводника, м
Линии магнитной индукции
Графически магнитное поле можно изобразить с помощью линий магнитной индукции.
Магнитное поле тока прямолинейного провода имеет линии магнитной индукции в виде окружностей, лежащих в плоскостях, перпендикулярных направлению тока, с центром на оси
провода.
Направление магнитной индукции в этом случае определяется с помощью правила буравчика:
если направление поступательного движения буравчика (винта) совместить с направлением тока в проводе, то вращение рукоятки (головки винта) покажет направление линий магнитной индукции.
Рис. 24. 6. Линии магнитной индукции прямолинейного проводника с током
в) Напряженность магнитного поля
Для расчета магнитный полей применяют и другую физическую величину – напряженность магнитного поля Н . Единицей напряженности магнитного поля является Ампер/метр (А/м)
Связь между магнитной индукцией и напряженностью магнитного поля для немагнитных материалов определяется выражением
Где: В – магнитная индукция, Тл
Н – напряженность магнитного поля, А/м.
- магнитная постоянная
г) Магнитный поток
Величина магнитной индукции, проходящей через поверхность площадью s, перпендикулярной вектору магнитной индукции, называется магнитным потоком Ф.
Рис.24.7. Магнитный поток
Величина магнитного потока определяется по формуле:
Ф=Вs
Где: Ф – магнитный поток Вб, вебер.
В- магнитная индукция, Тл
s – площадь площадки, м2