
- •1)Получение, свойства и применение фенилона.
- •2) Технология получения соли аг.
- •3) Технологические особенности переработки полиамидов различного химического строения.
- •1) Циклоалифатические и алифатические эпоксидные олигомеры, эпоксидированные новолачные олигомеры.
- •2) Технология получения полиметил- и полидиметилфенилсилоксанов. Их свойства и применение.
- •3) Техника безопасности и охрана окружающей среды при производстве алкидных смол.
- •1.Полиимиды. Сырьё. Способы получения. Свойства. Применение.
- •2. Технология производства полиэтилентерефталата (технологическая схема процесса).
- •3. Особенности св-в полиамидов (па), обусловленные хим. Строением и структурой полимера, определяющие области их практического применения.
- •1). Получение, св-ва, применение элементорганических (ЭлО) полимеров, содержащих алюминий, титан, фосфор.
- •2). Фурфуролацетоновые (ффа) пол-ры. Исходное сырье. Технология получения.
- •3). Техника безопасности при пр-ве сложных полиэфиров (пЭф) и защита окр. Среды .
- •1. Полиэфиракрилаты (пэа). Способы получения. Свойства. Применение.
- •2. Фуриловые полимеры. Сырьё для их получения. Технология получения термореактивного олигомера фа-2 и карбамидо-фуранового олигомера кф-90.
- •3.Свойства и применение полиамидов (па). Техника безопасности при производстве полиамидов и защита окружающей среды.
- •1.Ненасыщенные полиэфиры(нпЭф). Полималеинаты(пм) и полифумараты(пф). Способы получения. Свойства. Применение.
- •3. Полибензимидазолы(пби), полибензоксазолы(пбо), поли-1,3,4-оксадиазолы и другие полимеры. Получение. Свойства.
- •1) Эпоксидные полимеры. Сырьё. Способы получения. Реакции образо-вания эпоксидных олигомеров.
- •2)Технология производства полиэфиров.
- •3) Техника безопасности при производстве полиамидов и защита окружающей среды.
- •1)Алкидные полимеры. Свойства. Применение.
- •2)Получение поли--капролактама гидролитической и анионной полимеризацией -капролактама.
- •3) Переработка полиамидов. Модификация полиамидов.
- •1) Термореактивные сложные полиэфиры (спЭф). Сырьё для их получения.
- •3) Свойства и применение полиорганосилоксанов (пос).
- •1) Ненасыщенные полиэфиры. Полималеинаты и полифумараты. Способы получения. Свойства. Применение.
- •2) Технология получения смешанного полиарилата дифенилолпропана, терефталевой и изофталевой кислот.
- •3) Реакции олигомеризации фурфурилиденацетона.
- •Полиарилаты. Способы получения. Свойства. Применение.
- •2. Технология получения полиамида 6,6 (полигексаметиленадипамида) и полиамида 12 (полидодеканамида).
- •3. Фурановые полимеры. Общие сведения.
- •1. Полиэфиракрилаты. Способы получения. Свойства. Применение.
- •2. Технология получения поликарбоната непрерывным способом.
- •1) Циклоалифатические и алифатические эпоксидные олигомеры, эпоксидированные новолачные олигомеры.
- •1. Эпоксидные полимеры. Сырьё. Способы получения. Реакции образования эпоксидных олигомеров.
- •2. Технология производства поликарбонатов (дифлона)
- •3. Технология получения полиимидов двухстадийным способом.
- •1. Промышленные способы получения поликарбонатов. Свойства и применение поликарбонатов.
- •2. Методы двухстадийного и одностадийного получения алифатических эпоксидных олигомеров. Их свойства и применение.
- •3. Пресс-материалы, пластбетон, полимерные замазки на основе фурфуролацетоновых олигомеров (фа) и мономера (фа).
- •Полимерные замазки (мастики) на основе мономера фа
- •Билет 18
- •3. Тб при пр-ве эпоксидных п-ров и защита ос.
- •1.Термопластичные сложные полиэфиры
- •2. Эпоксидированные новолачные олигомеры
- •3. Отверждение
1)Алкидные полимеры. Свойства. Применение.
Алкидные полимеры представляют собой продукты поликонденсации многоосновных кислот с многоатомными спиртами. Наибольшее техническое значение имеют глифталевые полимеры получаемые поликонденсацией глицерина с фталевым ангидридом:
В промышленности немодифицированные глифталевые полимеры получают поликонденсацией глицерина с фталевым ангидридом (2:3). Реакцию проводят в реакторах из алюминия или нержавеющей стали, снабженных пропеллерными или якорными мешалками. Глицерин загружают в реактор, нагревают до 110—120 °С и при непрерывном перемешивании прибавляют к нему фталевый ангидрид. После растворения ангидрида реакционную смесь нагревают до 150—180 °С и при этой, температуре процесс ведут до тех пор, пока кислотное число не достигнет 90—120 мг КОН/г полимера, а температура каплепадения (по Уббелоде) не составит 80—120°С. После этого полимер сливают на противни, охлаждают и измельчают.
На первой стадии процесса образуются кислые эфиры, содержащие кислотные и гидроксильные группы, которые могут подвергаться дальнейшей этерификации сначала с получением полимеров линейного строения, а затем (при более высоких температурах) с превращением их в полимеры пространственного строения. Вторая стадия протекает значительно медленнее первой. Выделение воды начинается после завершения реакции примерно на 50%, после того как все ангидридные группы фталевого ангидрида практически израсходуются. Далее происходит этерификация карбоксильных групп спиртовыми. Вследствие большей реакционной способности а-гидроксильных групп глицерина в первую очередь образуются α-замещенные моно- и диэфиры, затем уже реагируют β-гидроксильные группы глицерина. При 75—80%-ной степени превращения (молекулярная масса 700—1100) происходит гелеобразование. Преждевременного гелеобразования можно избежать, вводя в реакционную смесь одноосновную кислоту, одноатомный спирт или другие добавки. При применении в качестве модифицирующих добавок ненасыщенных жирных кислот (например, олеиновой, линолевой) получают полиэфиры, содержащие в боковых ответвлениях двойные связи
Глифталевые полимеры хорошо растворимы в циклогексаноне, спиртах, ацетоне, ряде сложных эфиров и нерастворимы в бензоле, петролейном эфире, ароматических углеводородах. Немодифицированные глифталевые полимеры имеют ограниченное применение из-за хрупкости, склонности к гелеобразованию. Они отверждаются лишь при длительной выдержке при высокой температуре. Эти недостатки можно устранить путем синтеза модифицированных глифталевых полимеров. Получают три типа модифицированных глифталевых полимеров: тощие, средние и жирные, содержание модифицирующих масел в которых составляет 35—45, 46—55 и 56—70% (масс.) соответственно. Иногда получают сверхтощие (содержание Масла до 34%) и очень жирные полимеры, содержание масла в которых составляет более 70% (масс.). По способности к высыханию алкидные полимеры подразделяют на высыхающие и невысыхающие. Высыхающие полимеры содержат непредельные одноосновные жирные кислоты, входящие в состав высыхающих (льняное, тунговое, дегидратированное касторовое) или полувысыхающих (подсолнечное, соевое) масел. Такие алкидные полимеры в тонком слое способны отверждаться прямо на воздухе или в процессе сушки при 60—80 °С. Невысыхающие алкидные полимеры содержат насыщенные или только с одной двойной связью в молекуле одноосновные жирные кислоты, входящие в состав невысыхающих масел (кокосовое, касторовое). Эти алкидные полимеры не отверждаются в тонком слое даже при горячей сушке при температуре выше 120 °С.
Модифицированные глифталевые полимеры можно получать также переэтерификацией масла (например, типа льняного) глицерином и конденсацией неполных глицеридов с фталевым ангидридом. Для этого масло и глицерин нагревают при перемешивании в реакторе в присутствии оксида свинца (0,01— 0,05% от массы масла) при 220—230 °С в течение 0,5—1 ч. Затем проводят поликонденсацию полученных неполных глицеридов с фталевым ангидридом при 250—260 °С. Процесс контролируют по кислотному числу реакционной смеси, которое к концу поликонденсации обычно составляет 20—25 мг КОН/г полимера.
В качестве спиртового компонента для синтеза алкидных полимеров применяют также пентаэритрит. Пентаэритрит, содержащий в молекуле равноценные первичные спиртовые группы, реагирует с двухосновными кислотами более энергично, чем глицерин, поэтому гелеобразование в этом случае наступает на более ранней стадии протекания реакции. Для предотвращения гелеобразования полипентаэритритфталаты модифицируют. Более высокая функциональность пентаэритрита по сравнению с глицерином позволяет применять для модификации алкидных полимеров масла в значительно больших количествах, заменять высыхающие масла полувысыхающими и даже невысыхающими, что придает покрытиям на основе таких полимеров повышенную эластичность. Скорость высыхания модифицированных алкидных полимеров зависит от содержания в них ненасыщенной кислоты. Для ускорения, высыхания к ним прибавляют сиккативы.
Для синтеза алкидных полимеров в последнее время применяются также триметилолпропан, триметилолэтан, фталевый ангидрид частично заменяется пиромеллитовым, тримеллито- вым и малеиновым ангидридом, терефталевой, изофталевой, дифеновой, фумаровой и другими кислотами, используются различные масла жирных кислот, и продукты их переработки. Применение для синтеза алкидных полимеров вместо фталевого ангидрида изофталевой кислоты дает возможность получать на основе этих полимеров лаки воздушной сушки с меньшей продолжительностью высыхания, большими ударной вязкостью, сопротивлением к истиранию и твердостью. Алкидные полимеры, синтезированные из терефталевой и изофталевой кислот, характеризуются большей теплостойкостью, чем соответствующие полимеры ортофталевой кислоты.
Покрытия из алкидных полимеров, содержащих пиромеллитовую кислоту, обладают большей твердостью и быстрее высыхают, чем покрытия из алкидных полимеров фталевой или изофталевой кислот. Алкидные полимеры на основе хлорэндиково- го ангидрида имеют пониженную горючесть.
На основе хлорангидридов терефталевой и изофталевой кислот, бисфенолов и многоатомных спиртов, содержащих в молекуле более двух гидроксильных групп, таких, как глицерин, триметилолпропан, триметилолэтан, флороглюцин, получены полиэфиры повышенной теплостойкости.