Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по дискретной математике1 / Раздел 2 теория множеств.doc
Скачиваний:
92
Добавлен:
02.05.2014
Размер:
392.7 Кб
Скачать

Тема 2.2 Подмножество. Понятие универсального множества. Подмножество

Определение: Множество Х является подмножеством Y, если любой элемент множества Х принадлежит множеству Y. Это еще называется нестрогим включением.

Некоторые свойства подмножества:

  1. ХХ - рефлективность

  2. X  Y & YZ  X  Z - транзитивность

  3.   X т.е. пустое множество является подмножеством любого множества.

Например:

Пусть Х – множество студентов некоторой группы, Е – множество отличников этой же группы.

EX т.к. группа может состоять только из отличников.

Когда хотят подчеркнуть, что в множестве У есть обязательно элементы, отличные от элементов множества Х, то пишут ХУ. Это называется строгим включением.

Например:

Пусть Х – множество всех курсантов ДВИММУ, Е – множество курсантов электромеханического факультета.

EX т.к. в множестве всех курсантов ДВИММУ, обязательно есть элементы  E.

Упражнение: Самостоятельно определить свойства строгого включения.

Универсальное множество

Определение: Универсальное множество – это такое множество, которое состоит из всех элементов, а так же подмножеств множества объектов исследуемой области, т.е.

  1. Если М I , то М I

  2. Если М I , то Ώ(М) I , где под Ώ(М) – понимаются все возможные подмножества М, или Булеан М.

Универсальное множество обычно обозначается I.

Универсальное множество может выбираться самостоятельно, в зависимости от рассматриваемого множества, и решаемых задач.

Например:

Рассматривая множество студентов вашей группы, в качестве универсального множества можно взять и множество студентов ДВГМА, и множество всех людей земли, и множество всех живых существ земли.

Рассматривая множество целых положительных чисел, в качестве универсального множества можно взять и множество целых чисел, и множество действительных чисел, и множество комплексных чисел, и само множество целых положительных чисел.

Более подробно о свойствах универсального множества мы поговорим, обсуждая операции над множествами. Скажем только, что если роль нуля в алгебре множеств играет пустое множество. То универсальное множество, играет роль единицы в алгебре множеств.

Тема 2.3 Операции над множествами.

Теперь определим операции над множествами.

  1. Пересечение множеств.

Определение: Пересечением множеств Х и У называется множество, состоящее из всех тех, и только тех элементов, которые принадлежат и множеству Х и множеству У.

Например: Х={1,2,3,4} У={2,4,6} пересечением {2,4}

Определение: Множества называются непересекающимися, если не имеют общих элементов, т.е. их пересечение равно пустому множеству.

Например: непересекающимися множествами являются множества отличников группы и неуспевающих.

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих одновременно всем множествам.

Свойства пересечения:

  1. X∩Y = Y∩X - коммутативности

  2. (X∩Y) ∩Z =X∩ (Y∩Z)=X∩Y∩Z - ассоциативности

  3. X∩ = 

  4. X∩I = Х

2. Объединение множеств

Определение: Объединением двух множеств называется множество, состоящее из всех и только тех элементов, которые принадлежат хотя бы одному из множеств Х или У.

Например: Х={1,2,3,4} У={2,4,6} объединением {1,2,3,4,6}

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих хотя бы одному из этих множеств.

Свойства объединения:

  1. XUY= YUY- коммутативности

  2. (X UY)UZ =XU (YUZ)=XUYUZ - ассоциативности

  3. XU = X

  4. XUI = I

Из свойств операций пересечения и объединения видно, что пустое множество аналогично нулю в алгебре чисел.