Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-30.docx
Скачиваний:
4
Добавлен:
23.09.2019
Размер:
248.93 Кб
Скачать

Краткое квантовомеханическое описание

Согласно классической механике, частица может находиться лишь в тех точках пространства, в которых её потенциальная энергия — Upot, меньше полной. Это следует из того обстоятельства, что кинетическая энергия частицы не может (в классич. физике) быть отрицательной, так как в таком случае импульс будет мнимой величиной. То есть, если две области пространства разделены потенциальным барьером, таким, что , просачивание частицы сквозь него в рамках классической теории оказывается невозможным. В квантовой же механике, мнимое значение импульса частицы соответствует экспоненциальной зависимости волновой функции от её координаты. Это показывает уравнение Шрёдингера с постоянным потенциалом:

(упрощенное уравнение Шрёдингера в одномерном случае) где координата; полная энергия, потенциальная энергия, редуцированная постоянная Планка, масса частицы).

Холодная эмиссия Теория туннельного эффекта имеет ряд весьма важных приложений в теории металлов и в ядерной физике. С помощью этой теории удалось понять ряд явлений, которые не нашли своего объяснения в классической физике. К числу этих явлений следует в первую очередь отнести холодную эмиссию, т. е. вырывание электронов из металла под действием электрического поля, а также возникновение контактной разности потенциалов. Однако прежде всего скажем несколько слов о теории «электронного газа», лежащей в основе электронной теории проводимости металлов. Высокая электропроводность металлов говорит о том, что электроны способны сравнительно свободно перемещаться внутри всей кристаллической решетки металла. Затруднен лишь их выход из металла в вакуум, требующий затраты некоторой энергии, так называемой работы выхода. Это наводит на мысль рассматривать простейшую модель металла как свободный электронный газ, движущийся в потенциальной яме, внутри которой (т. е. в металле) потенциальная энергия равна нулю V=0, а вне, т. е. в вакууме, V=Vо>0.

Решение уравнения Шрёдингера для водородного атома использует факт, что кулоновский потенциал является изотропным, то есть не зависит от направления в пространстве, другими словами, обладает сферической симметрией. Хотя конечные волновые функции (орбитали) не обязательно сферически симметричны, их зависимость от угловой координаты следуют полностью из изотропии основного потенциала: собственные значения оператора Гамильтона можно выбрать в виде собственных состояний оператора углового момента. Это соответствует тому факту, что угловой момент сохраняется при орбитальном движении электрона вокруг ядра. Отсюда следует, что собственные состояния гамильтониана задаются двумя квантовыми числами углового момента l и m (целые числа). Квантовое число углового момента l может принимать значения 0, 1, 2… и определяет величину углового момента. Магнитное квантовое число может принимать m = −l, …, +l; оно определяет проекцию углового момента на (произвольно выбранную) ось z.

Если мы примем во внимание спин электрона, то появится последнее, четвёртое квантовое число, определяющее состояния атома водорода — проекция углового момента собственного вращения электрона на ось Z. Эта проекция может принимать два значения. Любое собственное состояние электрона в водородном атоме полностью описывается четырьмя квантовыми числами. Согласно обычным правилам квантовой механики, фактическое состояние электрона может быть любой суперпозицией этих состояний. Это объясняет также, почему выбор оси Z для квантования направления вектора углового момента является несущественным: орбиталь для данных l и полученных для другой выделенной оси всегда представляется как подходящая суперпозиция различных состояний с разными m (но тем же самым l), которые были получены для Z.

Рассмотрим сейчас решение уравнения Шрёдингера для атома водорода. Так как потенциальная функция электрона в атоме водорода имеет вид где e — заряд электрона (и протона), r — радиус-вектор, то уравнение Шрёдингера запишется следующим образом:

Здесь ψ — волновая функция электрона в системе отсчёта протона, m — масса электрона,  — постоянная Планка, E — полная энергия электрона,  — оператор Лапласа. Так как потенциальная функция зависит от r, а не от координат по отдельности, удобно будет записать лапласиан в сферической системе координат

Квантовые числа, целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы (атомное ядро, атом, молекулу) и отдельные элементарные частицы. Применение К. ч. в квантовой механике отражает черты дискретности процессов, протекающих в микромире, и тесно связано с существованием кванта действия, или Планка постоянной, . К. ч. были впервые введены в физику для описания найденных эмпирически закономерностей атомных спектров (см. Атом), однако смысл К. ч. и связанной с ними дискретности некоторых величин, характеризующих динамику микрочастиц, был раскрыт лишь квантовой механикой.

Набор К. ч., исчерпывающе определяющий состояние квантовой системы, называется полным. Совокупность состояний, отвечающих всем возможным значениям К. ч. из полного набора, образует полную систему состояний. Состояние электрона в атоме определяется четырьмя К. ч. соответственно четырём степеням свободы электрона (3 степени свободы связаны с тремя координатами, определяющими пространственное положение электрона, а четвёртая, внутренняя, степень свободы — с его спином). Для атома водорода и водородоподобных атомов эти К. ч., образующие полный набор, следующие.

Главное К. ч. n = 1, 2, 3,... определяет уровни энергии электрона.

28 Пространственное квантование. Опыт Штерна-Герлаха. Правила отбора.

ВАРИАНТ 1 Пространственное квантование - одно из следствий соотношения неопределенностей Гейзенберга. Для его описания надо выбрать в пространстве направление и с ним совместить ось квантования . Слово "выбрать" не очень точно: на самом деле совершенно безразлично, куда направить ось квантования. Сила, действующая на частицу, не зависит от направления, все направления в пространстве эквивалентны, и ось квантования можно ориентировать как угодно. А если бы вектор М был классическим, то есть его свойства описывались законами ньютоновской механики, то и угол q между вектором М и осью мог быть произвольным. В квантовой механике не так.

Примем ось квантования за ось z прямоугольной (декартовой) системы координат; две другие оси - х и у; Mx, My, Mz= Mcosq - проекции вектора М на оси выбранной (но ориентированной произвольно) системы координат. Пространственное квантование означает, что угол qне произволен, он таков, что проекция вектора М на ось z (ось квантования) принимает целочисленные значения: Mz= -ћl, -ћ(l-1) … ћ(l-1), ћl, где l - целое число или нуль. Всего вектор М может иметь 2l + 1 проекций на ось квантования. Число l задает длину вектора М - величину момента М: М МЅ = ћ[l(l+1)]1/2. Кроме Mz, других определенных проекций (Mx, My) вектор М не имеет вовсе.

ВАРИАНТ 2 Квантование пространственное в квантовой механике, дискретность возможных пространственных ориентаций момента количества движения атома (или др. частицы или системы частиц) относительно любой произвольно выбранной оси (оси z). К. п. проявляется в том, что проекция Мг  момента М на эту ось может принимать только дискретные значения, равные целому (0, 1, 2,...) или полуцелому (1/2, 3/2,5/2,...) числу m, помноженному на Планка постоянную , . Две другие проекции момента Mx и Му остаются при этом неопределёнными, т. к., согласно основному положению квантовой механики, одновременно точные значения могут иметь лишь величина момента и одна из его проекций. Для орбитального момента количества движения m (ml) может принимать значения 0, ± 1, ± 2,... ± l, где l = 0, 1, 2... определяет квадрат момента Ml (т. е. его абсолютную величину): . Для полного момента количества движения М (орбитального плюс спинового) m (ml) принимает значения с интервалом в 1 от — j до + j, где j определяет величину полного момента:  и может быть целым или полуцелым числом.

Если атом помещается во внешнее магнитное поле H, то появляется выделенное направление в пространстве — направление поля (которое и принимают за ось z). В этом случае К. п. приводит к квантованию проекции mн магнитного момента атома m на направление поля, т.к. магнитный момент пропорционален механическому моменту количества движения (отсюда название m — "магнитное квантовое число"). Это приводит к расщеплению уровней энергии атома в магнитном поле вследствие того, что к энергии атома добавляется энергия его магнитного взаимодействия с полем, равная — mHH (см. Зеемана эффект).

Опыт Штерна — Герлаха — опыт немецких физиков Отто Штерна и Вальтера Герлаха, осуществлённый в 1922 году. Опыт подтвердил наличие у атомов спина (изначально в эксперименте участвовали атомы серебра, а потом и других металлов) и факт пространственного квантования направления их магнитных моментов.

Опыт состоял в следующем: пучок атомов серебра пропускали через сильно неоднородное магнитное поле, создаваемое мощным постоянным магнитом. При прохождении атомов через это поле, в силу обладания ими магнитных моментов, на них действовала зависящая от проекции спина на направление магнитного поля сила, отклонявшая летящие между магнитами атомы от их первоначального направления движения. Причём, если предположить, что магнитные моменты атомов ориентированы хаотично (непрерывно), то тогда на расположенной далее по направлению движения атомов пластинке должна была проявиться размытая полоса. Однако вместо этого на пластинке образовались две достаточно чёткие узкие полосы, что свидетельствовало в пользу того, что магнитные моменты атомов вдоль выделенного направления принимали лишь два определённых значения, что подтверждало предположение квантово-механической теории о квантовании магнитного момента атомов.

Позднее с аналогичными результатами были проделаны опыты для пучков атомов других металлов, а также пучков протонов и электронов. Эти опыты доказали существование магнитного момента у рассмотренных частиц и показали их квантовую природу, явив собой доказательство постулатов квантовой теории.

Отбора правила, правила, определяющие возможные квантовые переходы для атомов, молекул, атомных ядер, взаимодействующих элементарных частиц и др. О. п. устанавливают, какие квантовые переходы разрешены (вероятность перехода велика) и какие запрещены — строго (вероятность перехода равна нулю) или приближённо (вероятность перехода мала); соответственно О. п. разделяют на строгие и приближённые. При характеристике состояний системы с помощью квантовых чисел О. п. определяют возможные изменения этих чисел при переходе рассматриваемого типа.

О. п. связаны с симметрией квантовых систем, т. е. с неизменностью (инвариантностью) их свойств при определённых преобразованиях, в частности координат и времени, и с соответствующими сохранения законами. Переходы с нарушением строгих законов сохранения (например, энергии, импульса, момента количества движения, электрического заряда и т.д. замкнутой системы) абсолютно исключаются.

29. Спин электрона. Четвертое квантовое число. Эффект Зеемана

Электро́н (от др.-греч. ἤλεκτρον — янтарь[2]) — стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Является фермионом (то есть имеет полуцелый спин). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов, где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме.Согласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном.

Четвертое квантовое число называется магнитным спиновым числом ms (или просто спином s) и характеризует чисто квантовое свойство электрона — спин. Спин электрона есть собственный момент количества движения. Хотя интерпретация этого свойства сложна, его можно уподобить вращению электрона вокруг своей воображаемой оси. Магнитное спиновое число ms может быть равно либо (-1/2), либо (+1/2)1.

Зеемана эффект, расщепление спектральных линий под действием магнитного поля. Открыто в 1896 П. Зееманом при исследовании свечения паров натрия в магнитном поле. Для наблюдения З. э. источник света, испускающий линейчатый спектр, располагается между полюсами мощного электромагнита (рис. 1). При этом каждая спектральная линия расщепляется на несколько составляющих. Расщепление весьма незначительно (для магнитных полей ~ 20 кэ составляет несколько десятых ), поэтому для наблюдения З. э. применяют спектральные приборы с высокой разрешающей способностью.

Все компоненты зеемановского расщепления поляризованы (см. Поляризация света). Картина расщепления и поляризация компонент зависят от направления наблюдения. В простейшем случае в направлении, перпендикулярном направлению магнитного поля (поперечный З. э.), обнаруживаются (рис. 2) 3 линии: несмещенная p-компонента, поляризованная по направлению поля, и 2 симметрично по отношению к ней расположенные s-компоненты, поляризованные перпендикулярно полю. При наблюдении в направлении поля (продольный З. э.) остаются только s-компоненты, поляризованные в этом случае по кругу.

Первое объяснение З. э. дал Г. Лоренц в 1897. Он рассматривал электрон в атоме как гармонический осциллятор частоты излучающий в отсутствие внешнего поля спектральную линию этой частоты. В однородном внешнем магнитном поле Н движение линейно колеблющегося электрона можно разложить на линейное колебание вдоль направления поля и два круговых колебания (с противоположными направлениями вращения) в плоскости, перпендикулярной Н (рис. 3). На линейное колебание поле Н не действует, и его частота остаётся равной v0; частоты круговых составляющих изменяются, т.к. электрон в магнитном поле получает дополнит. вращение вокруг направления магнитного поля с частотой Dv = 1/4p(e/me) Н, где е/ме — отношение заряда электрона к его массе (см. Лармора прецессия). Частоты этих колебаний становятся равными v1 = v0 + Dv и v2 =vo — Dv. Т. о., атом в магнитном поле испускает 3 линии с частотами v0, v1 и v2 (зеемановский триплет). Такая картина расщепления — простой (или нормальный) З. э. — получается только для одиночных спектральных линий (см. Атомные спектры), а также в предельном случае очень сильных магнитных полей (эффект Пашена — Бака). Как правило, наблюдается более сложная картина: спектральная линия расщепляется на большее число компонент с различными значениями Dv — сложный (или аномальный) З. э.; получается спектральная группа равноотстоящих p-компонент и две симметрично от неё расположенные группы равноотстоящих s-компонент.

рис1 рис2 рис3

30.Многоэлектронные атомы. Принцип Паули

В многоэлектронных атомах в результате эффекта межэлектронных взаимодействий происходит энергетическое расщепление (расхождение) орбиталей различного типа, но с одним и тем же значением главного квантового числа (3s<3p<3d и т. д.). Если бы это расщепление было небольшим и меньшим расщепления по энергии атомных орбиталей под воздействием изменения главного квантового числа n, то энергетическая последовательность атомных орбиталей выглядела бы так: 1s«2s<2p"3s<3p<3d"4s<4p<4d<4f"5s...

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механики: волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения

Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений. Количество электронов в отдельном атоме равно количеству протонов. Так как электроны являются фермионами, принцип Паули запрещает им принимать одинаковые квантовые состояния. В итоге, все электроны не могут быть в одном квантовом состоянии с наименьшей энергией (для невозбуждённого атома), а заполняют последовательно квантовые состояния с наименьшей суммарной энергией (при этом не стоит забывать, что электроны неразличимы, и нельзя сказать, в каком именно квантовом состоянии находится данный электрон). Примером может служить невозбуждённый атом лития (Li), у которого два электрона находятся на 1S орбитали (самой низкой по энергии), при этом у них отличаются собственные моменты импульса и третий электрон не может занимать 1S орбиталь, так как будет нарушен запрет Паули. Поэтому, третий электрон занимает 2S орбиталь (следующая, низшая по энергии, орбиталь после 1S).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]