
- •1.Организация государственной и ведомственной метрологической службы.
- •2.Структура и задачи метрологии
- •3.Основные понятия и определения метрологии
- •4.Системы физических величин.Си,сгс. Принцип построения си.
- •5.Постулаты метрологии. Классификация и методы измерений
- •6.Погрешности измерений.Классификация и методы измерений
- •7.Систематические погрешности
- •8.Причины появления, методы обнаружения и устранения систематическихпогрешносте
- •9.Случайные погрешности.Математическоеописание.Числовые параметры законов распределения
- •10.Грубые погрешности.Способы определения.
- •11.Погрешности однократных косвенных измерений
- •12.Принципы суммирования погрешностей
- •13.Средства измерений.Классификация, назначение, структурные схемы
- •Структурные схемы измерительных устройств
- •14.Метрологические характеристики си
- •15.Нормирование метрологическиххарактеристик.Надежность си
- •16.Испытание си. Государственные, контрольные, приемно-сдаточные испытан
- •17.Си давления. Единицы измерения. Виды давлений. Гидростатический манометр.
- •18.Деформационные манометры
- •19.Измерение разности давлений и требование к установке манометров.
- •20.Измерения температуры. Теоретические основы. Классификация сит, мтш.
- •21.Манометрические термометры.
- •22.Термопреобразователи сопротивления. Статическая характеристика. Материалы. Погрешности.
- •24. Мосты и логометры. 2-х и 3-х проводные схемы.
- •25. Термоэлектрические преобразователи. Материалы, характеристики. Измерительный потенциометр. Схема и расчёт.
- •26. Динамические характеристики контактных термометров.
- •27. Си высоких температур. Пирометрия. Виды пирометров.
- •28. Расход. Виды расходов. Единицы измерения. Требования предоставляемые к расходомерам.
- •29.Расходомеры переменного перепада давления. Приемущества и недостатки. Виды сужающих устройств. Статическая характеристика.
- •30.Расходомеры с осредняющими трубками. Расходомеры переменного уровня.
- •31. Расходомеры постоянного перепада давления. Ротаметры.
- •32. Тахометрические расходомеры. Аксиальные и тангенциальные. Одноструйные и многоструйные. С овальными шестернями.
- •49.Реостатные пип
- •50.Тензорезистивные пип
- •51.Пьезорезистивные пип
- •Терморезистивные пип
- •Магниторезистивные пип
- •52.Термоанемометры.
- •53.Фотоэлектрические преобразователи
- •54.Индуктивные пип
- •55.Емкостные преобразователи
- •56.Системы передачи информации.
- •57.Пневматическая система передачи информации
- •58.Электрические системы передачи измерительной информации
- •60.Пип с преобразователями «перемещение – ток»
- •62.Сельсинная система передачи информации
- •63.Канал передачи информации
- •Блок- схема канала передачи информации
- •64.Средства измерений плотности жидкостей и газов
- •65.Ареометры.Уравнения статической характеристики на примере поплавкового плотномера.Плотномеры с частично и полностью погружёнными поплавками.
- •66. Гидростатические плотномеры.Статическаяхарактеристика.Плотномеры с сильфонами.Барботажныйплотномер.Статическаяхарактеристика.Виброционныйплотномер.Статическая характеристика.
- •67.Аэростатический плотномер.Уравнение статической характеристики.Схемы.
- •68.Тепловой плотномер.Схема.Принципработы.Статическаяхарактеристика.Метрологические характеристики.
- •69.Газодинамические плотномеры.Статическиехарактеристики.Схемы.
- •70.Измерение вязкости.Определение.Классификация.Единицыизмерения.Вискозиметр истечения капилярноготипа.ЗаконПуазейля.Автоматический вискозиметр.
- •71.Вискозиметры с падающим телом.ЗаконСтокса.Автоматическийвискозиметр.Ротационные вискозиметры.
- •72.Измерение влажности газов.Определения.Психометрическийметод.Статическаяхарактеристика.Аспирационныйпсихометр.
- •73.Конденсационный психометр.Схема.Работа.Характеристики.
- •74.Сорбционные,диэлькометрические,кулонометрические и ик-гигрометры.
- •75.Методы измерения влажности твёрдых и сыпучих тел. Определения. Прямые и косвенные методы.Экстракционные,химические,электрометрические,диэлькометрические.Физические методы измерения влажности.
- •76.Измерение концентраций.Определения.Классификация.Вывод уравнения сигнала анализатора.
- •77.Термокондуктометрический газоанализатор.Уровнение теплопроводности измерительной ячейки.Автоматический газовый мост.Вывод уравнения анализатора.
- •78.Магнитный газоанализатор.Основыные физические соотношения.Принципизмерения.Термомагнитный автоматический анализатор кислорода.
- •79.Диффузионный газоанализатор.Принципизмерения.Коэффициентдиффузии.Схема автоматического мембранного анализатора.Уравнение сигнала анализатора.Взаимная диффузия в газах.
- •Мембранный газоанализатор
- •80.Сорбционный газоанализатор.Дилатометрические,электрические (кварцевые,диэлькометрические,кондуктометрические) газоанализаторы.Физикаявлений.Взаимная диффузия в газах.
- •80.Сорбционный газоанализатор. Дилатометрические, электрические,(кварцевые, диэлькометрические, кондуктометрические) газоанализаторы. Физика явлений. Современные схемы.
- •81. Газовая и жидкостная хроматография. Принцип измерения концентраций. Структурная схема хромотографа. Статическая характеристика.
- •8 3. Колорометрический газовый анализатор.Схема.Принцип измерения концентрации.
- •84. Турбидиметрический газоанализатор.Схема.Уравнение интенсивности рассеянного излучения.
- •85.Нефелометр. Закон отражения. Схема автоматического прибора.
- •86. Ионизационные анализаторы. Уравнение сигнала анализатора.Уф и ик-анализаторы.
- •1 Источник α или β излучения,
- •Уф и ик анализаторы.
- •87. Оптико-аккустические газоанализаторы. Схема.
- •88.Измерение концентраций жидкостей .Определения. Закон Кольрауша.
- •89.Измерительные кондуктометрические ячейки. Измерительные схемы. Потенциометрические анализаторы. Виды потенциалов. Измерительные ячейки. Ионоселективные электроды.
- •90. Иис. Классификация по функциональному назначению и по характеру взаимодействия с объектом исследования.
- •91. Структурная схема измерительной иис.
- •92. Системы автоматического контроля (сак).Задачи сак. Структурная схема.
- •С труктурная схема сак
- •93. Системы технической диагностики –стд. Цели, задачи. Структурная схема. Классификация.
- •С труктурная схема стд
- •95. Интерфейсы ис. Структурная схема одноуровневой иис. Классификация интерфейсов.
- •С труктурная схема одноуровневой иис
- •1 Семестр
- •1. Организация государственной и ведомственной метрологической службы.
- •2 Семестр
53.Фотоэлектрические преобразователи
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
Полупроводниковые фотоэлектрические преобразователи энергии: Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных условиях уже достигнут КПД 43,5 %.
Физический принцип работы фотоэлемента:Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
Фотоэлектронный умножитель (ФЭУ) — электровакуумный прибор, в котором поток электронов, излучаемый фотокатодом под действием оптического излучения (фототок), усиливается в умножительной системе в результате вторичной электронной эмиссии; ток в цепи анода (коллектора вторичных электронов) значительно превышает первоначальный фототок (обычно в 105 раз и выше). Впервые был предложен и разработан Л. А. Кубецким в 1930—1934 гг.
Основные параметры ФЭУ
Световая анодная чувствительность (отношение анодного фототока к вызывающему его световому потоку при номинальных потенциалах электродов), составляет 1—104 А/лм
Спектральная чувствительность (равная спектральной чувствительности фотокатода, умноженной на коэффициент усиления умножительной системы, лежащий обычно в пределах 10³—108) (до 1011);
Темновой ток (ток в анодной цепи в отсутствие светового потока), как правило, не превышает 10−9—10−10 А.
В зависимости от конструкции динодной системы ФЭУ разделяются на:
системы на дискретных динодах с электростатической фокусировкой электронных пучков (наиболее часто используемые диноды коробчатые, ковшеобразной и тороидальной формы),
системы на дискретных динодах сквозного типа (динодами являются сетки, жалюзи, плёнки),
системы на распределённых динодах (пластинчатые, щелевые и трубчатые).
Фотоэлектронный умножитель состоит из входной (катодной) камеры (образуется поверхностями фотокатода, фокусирующих электродов, первого динода), умножительной динодной системы, анода и дополнительных электродов. Все элементы размещаются в вакуумном корпусе (баллоне).
ПЗС-ма́трица (сокр. от «прибор с зарядовой связью») или CCD-ма́трица (сокр. от англ. CCD, «Charge-Coupled Device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью. ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов.
До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.
Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.
После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.
В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p — типа оснащается каналами из полупроводника n -типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма, назначение которой— хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.
Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.