
- •1.Организация государственной и ведомственной метрологической службы.
- •2.Структура и задачи метрологии
- •3.Основные понятия и определения метрологии
- •4.Системы физических величин.Си,сгс. Принцип построения си.
- •5.Постулаты метрологии. Классификация и методы измерений
- •6.Погрешности измерений.Классификация и методы измерений
- •7.Систематические погрешности
- •8.Причины появления, методы обнаружения и устранения систематическихпогрешносте
- •9.Случайные погрешности.Математическоеописание.Числовые параметры законов распределения
- •10.Грубые погрешности.Способы определения.
- •11.Погрешности однократных косвенных измерений
- •12.Принципы суммирования погрешностей
- •13.Средства измерений.Классификация, назначение, структурные схемы
- •Структурные схемы измерительных устройств
- •14.Метрологические характеристики си
- •15.Нормирование метрологическиххарактеристик.Надежность си
- •16.Испытание си. Государственные, контрольные, приемно-сдаточные испытан
- •17.Си давления. Единицы измерения. Виды давлений. Гидростатический манометр.
- •18.Деформационные манометры
- •19.Измерение разности давлений и требование к установке манометров.
- •20.Измерения температуры. Теоретические основы. Классификация сит, мтш.
- •21.Манометрические термометры.
- •22.Термопреобразователи сопротивления. Статическая характеристика. Материалы. Погрешности.
- •24. Мосты и логометры. 2-х и 3-х проводные схемы.
- •25. Термоэлектрические преобразователи. Материалы, характеристики. Измерительный потенциометр. Схема и расчёт.
- •26. Динамические характеристики контактных термометров.
- •27. Си высоких температур. Пирометрия. Виды пирометров.
- •28. Расход. Виды расходов. Единицы измерения. Требования предоставляемые к расходомерам.
- •29.Расходомеры переменного перепада давления. Приемущества и недостатки. Виды сужающих устройств. Статическая характеристика.
- •30.Расходомеры с осредняющими трубками. Расходомеры переменного уровня.
- •31. Расходомеры постоянного перепада давления. Ротаметры.
- •32. Тахометрические расходомеры. Аксиальные и тангенциальные. Одноструйные и многоструйные. С овальными шестернями.
- •49.Реостатные пип
- •50.Тензорезистивные пип
- •51.Пьезорезистивные пип
- •Терморезистивные пип
- •Магниторезистивные пип
- •52.Термоанемометры.
- •53.Фотоэлектрические преобразователи
- •54.Индуктивные пип
- •55.Емкостные преобразователи
- •56.Системы передачи информации.
- •57.Пневматическая система передачи информации
- •58.Электрические системы передачи измерительной информации
- •60.Пип с преобразователями «перемещение – ток»
- •62.Сельсинная система передачи информации
- •63.Канал передачи информации
- •Блок- схема канала передачи информации
- •64.Средства измерений плотности жидкостей и газов
- •65.Ареометры.Уравнения статической характеристики на примере поплавкового плотномера.Плотномеры с частично и полностью погружёнными поплавками.
- •66. Гидростатические плотномеры.Статическаяхарактеристика.Плотномеры с сильфонами.Барботажныйплотномер.Статическаяхарактеристика.Виброционныйплотномер.Статическая характеристика.
- •67.Аэростатический плотномер.Уравнение статической характеристики.Схемы.
- •68.Тепловой плотномер.Схема.Принципработы.Статическаяхарактеристика.Метрологические характеристики.
- •69.Газодинамические плотномеры.Статическиехарактеристики.Схемы.
- •70.Измерение вязкости.Определение.Классификация.Единицыизмерения.Вискозиметр истечения капилярноготипа.ЗаконПуазейля.Автоматический вискозиметр.
- •71.Вискозиметры с падающим телом.ЗаконСтокса.Автоматическийвискозиметр.Ротационные вискозиметры.
- •72.Измерение влажности газов.Определения.Психометрическийметод.Статическаяхарактеристика.Аспирационныйпсихометр.
- •73.Конденсационный психометр.Схема.Работа.Характеристики.
- •74.Сорбционные,диэлькометрические,кулонометрические и ик-гигрометры.
- •75.Методы измерения влажности твёрдых и сыпучих тел. Определения. Прямые и косвенные методы.Экстракционные,химические,электрометрические,диэлькометрические.Физические методы измерения влажности.
- •76.Измерение концентраций.Определения.Классификация.Вывод уравнения сигнала анализатора.
- •77.Термокондуктометрический газоанализатор.Уровнение теплопроводности измерительной ячейки.Автоматический газовый мост.Вывод уравнения анализатора.
- •78.Магнитный газоанализатор.Основыные физические соотношения.Принципизмерения.Термомагнитный автоматический анализатор кислорода.
- •79.Диффузионный газоанализатор.Принципизмерения.Коэффициентдиффузии.Схема автоматического мембранного анализатора.Уравнение сигнала анализатора.Взаимная диффузия в газах.
- •Мембранный газоанализатор
- •80.Сорбционный газоанализатор.Дилатометрические,электрические (кварцевые,диэлькометрические,кондуктометрические) газоанализаторы.Физикаявлений.Взаимная диффузия в газах.
- •80.Сорбционный газоанализатор. Дилатометрические, электрические,(кварцевые, диэлькометрические, кондуктометрические) газоанализаторы. Физика явлений. Современные схемы.
- •81. Газовая и жидкостная хроматография. Принцип измерения концентраций. Структурная схема хромотографа. Статическая характеристика.
- •8 3. Колорометрический газовый анализатор.Схема.Принцип измерения концентрации.
- •84. Турбидиметрический газоанализатор.Схема.Уравнение интенсивности рассеянного излучения.
- •85.Нефелометр. Закон отражения. Схема автоматического прибора.
- •86. Ионизационные анализаторы. Уравнение сигнала анализатора.Уф и ик-анализаторы.
- •1 Источник α или β излучения,
- •Уф и ик анализаторы.
- •87. Оптико-аккустические газоанализаторы. Схема.
- •88.Измерение концентраций жидкостей .Определения. Закон Кольрауша.
- •89.Измерительные кондуктометрические ячейки. Измерительные схемы. Потенциометрические анализаторы. Виды потенциалов. Измерительные ячейки. Ионоселективные электроды.
- •90. Иис. Классификация по функциональному назначению и по характеру взаимодействия с объектом исследования.
- •91. Структурная схема измерительной иис.
- •92. Системы автоматического контроля (сак).Задачи сак. Структурная схема.
- •С труктурная схема сак
- •93. Системы технической диагностики –стд. Цели, задачи. Структурная схема. Классификация.
- •С труктурная схема стд
- •95. Интерфейсы ис. Структурная схема одноуровневой иис. Классификация интерфейсов.
- •С труктурная схема одноуровневой иис
- •1 Семестр
- •1. Организация государственной и ведомственной метрологической службы.
- •2 Семестр
2.Структура и задачи метрологии
Метрология– наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Как и любая наука, метрология имеет свои предмет и средства.
Предметомметрологии является получение количественной информации о свойствах объектов с заданной точностью и достоверностью.
Средства метрологии – совокупность средств измерений и стандартов, обеспечивающих их рациональное использование.
Современная метрология состоит из трех самостоятельных разделов, решающих свои специфические задачи: теоретической метрологии, законодательной и практической (прикладной).
Предметом теоретической метрологии является разработка теоретических основ метрологии.
Предметом законодательной метрологии является деятельность, направленная на обеспечение единства и необходимой точности измерений, требующая регламентации и контроля со стороны государства.
Предметом практической метрологии являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.
Основные задачи метрологии (ГОСТ 16263-70):
установление единиц физических величин, государственных эталонов и образцовых средств измерений,
разработка теории, методов и средств измерений и контроля,
обеспечение единства измерений и единообразных средств измерений,
разработка методов оценки погрешностей, состояния средств измерений, а также передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.
3.Основные понятия и определения метрологии
Как и любая наука, метрология базируется на системе понятий и определений, которые узаконены и изложены в соответствующих ГОСТах.
Измерение– это нахождение значения физической величины опытным путем с помощью специальных технических средств. Измерения обычно осуществляются на естественных или созданных человеком объектах, которые называют объектами измерений.
Принцип измерений– совокупность физических явлений, на которых основано измерение.
Метод измерений– совокупность приемов использования принципов и средств измерений.
Средство измерений– техническое средство, используемое при измерениях и имеющее нормированные метрологические характеристики.
Единство измерений –такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью.
Единство измерений необходимо для того, чтобы можно было сопоставлять результаты измерений, выполненных различными измерительными устройствами, в разных местах и в разное время.
Объект измерения – тело (физическая система, процесс, явление и.т.д.), которое характеризуется одной или несколькими измеряемыми ФВ.
Физическая величина– свойство, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого объекта. Под объектом понимают физические системы, их состояние, происходящие в них процессы.
Размер физической величины– количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина»
Однородными физическими величинаминазывают такие, которые можно сравнить по признаку «больше-меньше». Из однородных физических величин разного размера можно составить последовательный ряд, в котором размер каждой входящей в него величины будет больше размера всех предыдущих и меньше размера всех последующих величин.
Единица физической величины– это физическая величина, которой, по определению, приписано числовое значение, равное единице.
Измерительное преобразование– отражение размера одной физической величины размером другой физической величины, функционально с ней связанной. Понятие измерительного преобразования с физической точки зрения означает, что физическая величина не может быть определена сама по себе, а может быть воспринята только через тот физический процесс, в котором она проявляется.
Результат измерения– значение физической величины, найденное путем ее измерения.
Истинное значениефизической величины – значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. В философском аспекте истинное значение всегда остается неизвестным, а совершенствование измерений позволяет приближаться к истинному значению физической величины.
Действительное значениефизической величины – значение физической величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может, быть использовано вместо него.
Влияющая физическая величина– физическая величина, не являющаяся измеряемой данным СИ, но оказывающая влияние на результат измерения этим средством. В результате действия влияющих величин (несовершенство изготовления СИ, неточность их градуировки, изменение температуры и влажности окружающей среды, внешние электромагнитные поля, вибрации, субъективные ошибки человека-оператора и т. д.), результат искажается и появляется погрешность измерения.