
- •1.Происхождение и условия формирования грунтовых отложений.
- •2.Грунты типа песков и типа глин – особеннос ти и отличия, классификация по стб 943.
- •3.Гранулометрический состав песчаных и глинистых грунтов, методы определения
- •4. Физические характеристики грунтов и методы их определения.
- •5.Коэффициент пористости и коэффициент водонасыщенности.
- •6.Удельная поверхность грунтовых частиц и ее влияние на строительные свойства.
- •7.Виды воды в грунтах и их свойства.
- •8.Структурные связи и консистенция глинистых груниов
- •9.Сжимаемость грунтов и компрессионная зависимость
- •10.Закон уплотнения
- •11.Деформационные характеристики грунтов и методы их определения
- •12.Структурно неустойчивые просадочные грунты
- •13.Закон ламинарной фильтрации
- •20. Сжимающее напряжение в грунтовом массиве при действии нескольких сил и местной произвольнораспределенной нагрузки
- •2 1. Определение напряжений при действии местной равномерно распределенной нагрузки.
- •22. Метод угловых точек для определения напряжения.
- •23. Плоская задача определения напряжений при действии равномерно распределенной нагрузки.
- •24. Кривые равных напряжений- изобары, распоры, сдвиги
- •25.Главные напряжения и расположение эллипсов напряжений
- •26.Контактная задача о распределении давлений по осадке фундамента.
- •27. Влияние гибкости фундамента на эпюру контактных давлений.
- •28. Распределение напряжений от собственного веса грунта.
- •29. Предельное напряженное состояние грунта
- •30.Механические процессы в грунтах или в действии местной постепенно возрастающей нагрузки
- •31. Фазы напряженного состояния грунта
- •32. Условия предельного равновесия грунта и угол наибольшего отклонения
- •33. Начальная критическая нагрузка на грунт
- •34. Расчетное сопротивление грунта
- •36. Каноническое уравнение предельной нагрузки к.Терцаги и коэффициенты несущей способности.
- •37. Решение задачи предельного равновесия с учётом жёсткого ядра проф. В.Г.Березанцева.
- •38. Нарушение равновесия массивов грунта в земляных сооружениях.
- •39. Устойчивость свободных откосов идеально сыпучего грунта.
- •40. Устойчивость идеально связного массива грунта.
- •41. Метод круглоцилиндрических поверхностей скольжения при расчёте устойчивости откоса.
- •42. Основные меры по увеличению устойчивости массивов грунтов.
- •4 3.Сооружение подпорных стен для поддержания массивов грунтов в равновесии.
- •44.Давление грунтов на подпорную стенку, очертание линии скольжения и принятые допущения.
- •45. Пассивное сопротивление грунта при отклонении стенки.
- •46.Максимальное активное давление сыпучих грунтов на подпорные стенки.
- •47.Эпюра давлений на заднюю грань стенки при действии на поверхность грунта сплошной равномерно распределенной нагрузки.
- •48.Влияние наклона задней грани стенки на величину активного давления.
- •49.Давление связных грунтов на вертикальную гладкую стенку.
- •50.Графический метод определения давления грунтов на подпорные стенки.
- •51.Расчет вероятной осадки фундамента. Консолидация глинистых грунтов.
- •Дополнительное вертикальное напряжение σzp для любого сечения, расположенного на глубине z от подошвы, определяется по формуле:
- •Расчет осадки отдельного фундамента на основании в виде упругого линейно деформируемого полупространства с условным ограничением величины сжимаемой зоны производится по формуле:
- •52.Сжимающая толща грунта и факторы, влияющие на её величину
- •53.Расчет основания по двум группам предельных состояний
- •54.Классификация фундаментов по способу устройства
- •55Фундаменты мелкого заложения и их виды
- •56.Расчет жестких фундаментов
- •57.Принципы расчетов гибких фундаментов.
- •59.Конструирование монолитных и сборных фундаментов под стены и колонны.
- •60.Принципы расчетов ограждений строительных котлованов
- •61.Разработка грунта и возведение конструкций фундаментов в котлованах насухо и под водой.
- •62.Принятые классификации свайных фундаментов и конструкции деревянных и железобетонных свай.
- •63.Несущая способность свай по грунту
- •64.Динамические и статические испытания забивных свай
- •65.Куст свай, его работа и расчет основания
- •66. Проектирование свайных фундаментов
- •67.Фундамент в виде опускных колодцев
- •68.Кессонные фундаменты
- •69.Траншейные фундаменты, возводимые методом «стена в грунте»
- •71.Поверхностное и глубинное уплотнение грунтов.
- •72.Химическое закрепление грунтов
- •73.Фундаменты в сейсмических районах и сейсмичность в Беларуси.
- •74.Фундаменты под машины с динамическими нагрузками
- •75.Усиление фундаментов и упрочнение оснований при реконструкциях
30.Механические процессы в грунтах или в действии местной постепенно возрастающей нагрузки
31. Фазы напряженного состояния грунта
При возведении здания или сооружения наблюдается постоянное возрастание давления по подошве фундаментов. При таком характере воздействия в грунтовом основании, как и во всяком твердом теле, возникает напряженно-деформирующее состояние (НДС), которое адекватно интенсивности приложенной внешней нагрузки, причем возникает оно не только в точках контакта подошвы фундамента сооружения и грунта основания, но и на значительной глубине.
Распределение напряжений как под подошвой фундамента, так и на значительной глубине необходимо знать, так как прочность и устойчивость сооружений зависит от сопротивления (R) грунта, не только примыкающей к подошве, но и глубоколежащего.
При деформации грунтов под нагрузкой Н.М. Герсеванов выделил три фазы НДС:
I — фаза нормального уплотнения;
II — фаза сдвигов;
III — фаза выпирания грунта.
Зависимость
вертикальных перемещений фундамента
от действующего давления по его подошве
изображена на рис. 6.5.
Рис. 6.5. Зависимость осадки 5 от давления Р (график Н.М. Герсеванова)
На графике (см. рис. 6.5) участок оа соответствует фазе уплотнения (I), при которой осадка пропорциональна приложенной нагрузке. Эта фаза обусловлена вертикальным перемещением частиц грунта вниз Р≤Pсr,1 (Pсr,1≈Рпроп.) (рис. 6.6,а).
Из-за
концентрации напряжений под краями
фундамента в начале фазы сдвигов (II)
происходит разрушение грунта в локальных
областях, т.е. происходят местные потери
устойчивости. По мере роста внешней
нагрузки нарушается линейная зависимость
между осадкой и давлением. График S =
ƒ(P) (см. рис. 6.5) на участке аб характеризуется
значительной кривизной. При дальнейшем
возрастании давления под подошвой
фундамента формируется уплотненное
ядро и при малейшем увеличении внешней
нагрузки приведет к исчерпанию несущей
способности. На рис. 6.5,б такое давление
соответствует точке б,
являющейся
переходной от второй к третьей фазе
НДС.
Рис. 6.6. Фазы НДС в основании фундамента при возрастании давления по подошве: а — уплотнение; б, в — сдвиг; г — выпор грунта
Давление, соответствующее началу появления областей пластических деформаций (сдвигов и разрушения грунта) под краями фундамента, называется начальным, или первым критическим, давлением (Pcr,1).
Начальное
критическое давление определяется по
формуле Н.П. Пузыревского:
(6.1)
где γ — удельный вес грунта основания; φ — угол внутреннего трения; d — глубина заложения подошвы фундамента; с — удельное сцепление.
Во второй фазе под краями фундамента формируются области пластических деформаций (разрушения грунта), которые развиваются в сторону и в глубину (см. рис. 6.6,б), Pcr,1 < Р < R.
Согласно СНиП 2.02.01—83 наибольшая глубина развития области пластических деформаций под краями фундамента не должна превышать zmax = 0,25b. Среднее давление под подошвой фундамента, при котором под его краями в основании формируются области пластических деформаций на глубину zmax = 0,25b, приравнивается к расчетному сопротивлению (см. рис. 6.6,e) Р = R.
При дальнейшем увеличении давления по подошве фундамента Р > R области (зоны) локального разрушения грунта развиваются в ширину и в глубину основания, при этом под подошвой фундамента формируется уплотненное ядро в виде клина (см. рис. 6.6,г). В определенный момент времени краевые области разрушения грунта основания смыкаются на глубине и в результате расклинивающего действия уплотненного ядра устанавливается такое состояние, при котором малейшее увеличение нагрузки приводит к потере несущей способности.
Таким
образом, давление, соответствующее
исчерпанию несущей способности грунта
основания, называется предельным, или
вторым критическим давлением
(Pcr,2).Второе критическое давление
определяется по формуле
(6.2) где q — интенсивность боковой пригрузки.
Рассмотрим два примера, как влияет прочность нижележащего слоя на прочность и устойчивость сооружения.
Если в основании находятся слабые грунты, под покровом более устойчивых, то опасность нарушения устойчивости повышается с увеличением ширины фундамента (рис. 6.7).
Пример
6.1.
Рис. 6.7. Влияние ширины фундамента на прочность и устойчивость сооружения: а — при пластических деформациях; б — при выпоре грунта
Таким образом, если в основании находятся плотные грунты под покровом слабых, то опасность нарушения устойчивости понижается с увеличением ширины фундамента (рис. 6.8).
Если
из массива грунта, находящегося под
действием какой-либо нагрузки, выделить
кубик (рис. 6.9), то на него будут действовать
вертикальные и горизонтальные нормальные
напряжения σх, σу, σz и три пары касательных
напряжений — τxу и τух, τxz и τzx, τyz и
τzy.
Рис.
6.8. См. пояснения к рис. 6.7.
Рис. 6.9. Компоненты напряжений в грунте