- •Глава 2. Дифференциальное исчисление функций нескольких переменных
- •§1.Понятие функции нескольких переменных
- •§2.Предел и непрерывность функции нескольких переменных
- •2.1. Предел функции нескольких переменных
- •2.2. Непрерывность функции нескольких переменных
- •§3. Дифференцируемость функции нескольких переменных
- •3.1. Частные производные (ч.Пр.) функции двух переменных
- •Механический смысл частных производных
- •Геометрический смысл частных производных функции 2-х переменных
- •3.2. Понятие о дифференцирумости функции 2-х переменных
- •3.3. Дифференциал функции нескольких переменных. Приложение к приближенным вычислениям
- •3.4.Касательная плоскость к графику функции двух пременых Геометрический смысл дифференциала функции двух переменных
- •§4. Сложная функция и ее дифференцируемость
- •4.1. Понятие вектор-функции и композиции функций
- •4.2. Дифференцируемость сложной функции
- •Из дифференцируемости функции в точке м0 следует , что ее приращение
- •Где , 0, еслиX, у0.
- •4.3.Инвариантность формы дифференциала
- •§5. Производная по направлению. Градиент
- •§6. Неявные функции
- •§7.Частные производные и дифференциалы высших порядков
- •§8. Формула Тейлора для функции двух переменных
- •§9. Экстремумы функции двух переменных
- •9.1. Локальный экстремум
- •9.2. Абсолютный экстремум
- •9.3. Условный экстремум
- •Глава 3. Интегральное исчисление функций нескольких переменных §1. Двойной интеграл и его свойства.
- •1.1. Понятие двойного интеграла
- •1.2. Свойства двойного интеграла
- •1.3. Вычисление площадей фигур и объемов тел с помощью двойных интегралов
- •§2. Вычисление двойных интегралов
- •Пример 2.3. Поменять порядок интегрирования в интеграле §3. Замена переменных в двойном интеграле
- •§4.Площадь гладкой поверхности
- •§5. Тройной интеграл и его свойства
- •5.1. Определение тройного интеграла и его свойства
- •Свойства тройного интеграла
- •Геометрический смысл тройного интеграла
- •5.2. Вычисление тройного интеграла
- •§6. Замена переменных в тройном интеграле
- •Цилиндрические координаты
- •Сферические координаты
- •Глава 4. Криволинейные интегралы
- •1.1. Понятие криволинейного интеграла
- •1.2. Свойства криволинейного интеграла
- •1.3. Существование и вычисление криволинейного интеграла
- •§2. Формула Остроградского – Грина
- •Формула (2.3), связывающая криволинейный интеграл с двойным, называется формулой Остроградского – Грина.
- •§3 .Условие независимости криволинейного интеграла от пути интегрирования
- •§4. Восстановление функции по ее полному дифференциалу
- •1 Способ
§4. Восстановление функции по ее полному дифференциалу
Если функции P(x,y) и Q(x,y) непрерывные вместе со своими частными производными и в замкнутой , квадрируемой , односвязной области D и
= ,
то, как следует с теоремы 3.1, дифференциальная форма - полный дифференциал функции F(x,y), которую можно найти с помощью криволинейного интеграла, который не зависит от пути интегрирования:
1 Способ
Выберем за путь интегрирования ломаную АСВ.
Тогда F(x,y)= = =
ІІ способ
Пусть выполняется равенство P(x,y)dx + Q(x,y)dy= dF(x,y).
для функции одной переменной известно , что если
df(x)= f’(x)dx , то f(x) = или f(x)= . (4.1)
Т.к. = Р(х,у), то в силу (4.1) F(x,y)= , (4.2) где (у) – const, которая не зависит от х.
Продифференцируем (4.2) по переменной у:
= +(у), (4.3)
но = Q(x,y) (4.4)
Приравняем правые части равенств (4.3) и (4.4) и найдем
(у )= Q(x,y )- , (4.5)
а затем и (у ) по формуле (4.1). Полученное выражение для (у) подставить в (4.3).