Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОРГЭВМ(21-35).docx
Скачиваний:
13
Добавлен:
22.09.2019
Размер:
1.04 Mб
Скачать

Магнитный слой

Возвращаемся к аббревиатуре и вспоминаем, что у нас вращаются не просто какие-то там абстрактные диски, а магнитные, т. е. имеющие покрытие с определенными магнитными свойствами. Именно благодаря ему диски и способны хранить информацию. На первом уровне абстракции можно принять, что каждый микроскопический участок определенной площади (о чем чуть позже) хранит ровно один бит данных. Соответственно, его можно считать или записать.

Магнитное покрытие также имеет свои характеристики. Во-первых, это его площадь нанесения, которая несколько меньше, нежели весь диск. Использовать области у самых краев обычно чревато последствиями из-за особенностей технологии изготовления — не получается в этих областях нанести покрытие идеально. То же самое можно сказать и о центре. Соответственно, вся рабочая область заключена между двумя числами — минимальным и максимальным радиусом, первый из которых строго больше нуля, а второй — строго меньше радиуса самого диска. И вторым важнейшим параметром является плотность записи, т. е. величина, обратная площади, потребной на хранение единицы информации. На практике же этим значением пользуются не часто, оперируя величинами продольной и поперечной плотностей записи, что связано с механикой работы самого накопителя. Изучим этот вопрос поподробнее.

Головки, дорожки, сектора

Несмотря на то что для хранения информации используется почти вся поверхность диска, в каждый момент времени мы можем работать лишь с небольшой ее частью (иначе не нужно было бы и с вращением огород городить). Для чтения или записи данных используется магнитная головка (по одной на каждую используемую сторону дисков в пакете), летящая над поверхностью диска на небольшой высоте. Соответственно, за один оборот диска под ней проходит целая концентрическая дорожка, а для доступа к соседним областям головку необходимо смещать к центру или в обратном направлении. Совокупность всех дорожек, расположенных на равном расстоянии от центра на разных дисках, кстати, именуется цилиндром. Каждая дорожка имеет отличную от нуля ширину, так что на диске помещается конечное их количество. Сколько? Зависит от ширины рабочего слоя (которая, в свою очередь, определяется в основном диаметром диска) и от поперечной плотности записи. Ну или наоборот: поперечная плотность записи — это показатель того, сколько дорожек мы можем разместить в одном дюйме при текущем уровне технологии производства дисков и головок. Обычно определяющим является второе — резкое увеличение поперечной плотности связано с внедрением новых технологий производства магнитных головок, позволяющих им оперировать с дорожками меньшей ширины. Происходит такое, к сожалению, достаточно редко, зато сразу же существенно увеличивает емкость дисков.

Продольная же плотность записи показывает, сколько бит информации можно вместить на один дюйм длины окружности, которую собой представляет дорожка, рассматриваемая в качестве математической абстракции. Эта характеристика тоже зависит от уровня технологии производства дисков и головок, однако менее подвержена скачкообразным  изменениям, поскольку при одной и той же технологии производства головок может быть увеличена за счет улучшения характеристик магнитного покрытия (либо переход на новую технологию, либо улучшение текущей). Правда, несмотря на то что продольная плотность измеряется в битах на дюйм, на самом деле с отдельными битами на дисках не работают — слишком уж мелкая величина. И с байтами, обычно, тоже. Разве что в очень-очень старых компьютерах емкость запоминающих устройств была столь небольшой, что процессору удавалось адресовать не только каждый байт оперативной памяти, но и каждый байт на магнитных барабанах (диски тогда еще не применялись), поэтому иерархическая система памяти не требовалась — она вся могла считаться оперативной.

Однако к моменту появления первых персональных компьютеров емкость дисковых накопителей стала уже слишком большой, чтобы адресовать напрямую каждый байт, так что они окончательно стали устройствами с так называемым блочным доступом: минимальной единицей информации, которую можно считать с диска или записать на него, является блок или сектор. Типичный его размер для IBM PC и последователей составляет, кстати, 512 байт. Хотя изначально допустимы были и другие значения, но стандартными они не стали, так что масса программного обеспечения просто неспособна работать с секторами, отличными от указанного выше размера. Только сейчас некоторые производители жестких дисков начали применять увеличенные в восемь раз секторы (по 4К байт, соответственно), однако этот процесс находится лишь в начальной стадии.

В любом случае, на дорожке должно помещаться целое количество секторов. Причем крайне желательно, чтобы на соседних дорожках количество секторов было одинаковым. В случае дискет или первых винчестеров так и вовсе — считалось, что все дорожки содержат одинаковое количество секторов. Так что фактическая продольная плотность записи весьма быстро возрастала от окраин к центру, вместе с уменьшением длины дорожек. Причем максимальное ее значение ограничивалось технологией, так что, по сути, бо́льшая часть площади внешних дорожек расходовалась нерационально. Впрочем, пока дорожек было мало (на дискетах, например, их количество равно 40 или 80), с этим можно было мириться, а вот с ростом поперечной плотности записи такие потери становились все более и более существенными. Некоторое время с ними ничего не могли поделать, поскольку системное программное обеспечение было рассчитано на постоянное количество секторов на дорожке, однако по мере совершенствования дисковых интерфейсов и переноса большей части электроники непосредственно в накопитель реальную физическую структуру последнего от программ удалось спрятать.

Программы продолжали считать, что на диске количество секторов на дорожку является постоянной величиной, но на деле одинаковым оно осталось лишь в пределе ограниченной полосы из нескольких десятков дорожек, зато таковых зон стало несколько. Конечно, определенные потери дискового пространства есть и при данном методе, поскольку реальная и технологическая плотности записи обязаны совпадать на внутренних дорожках каждой зоны, а на внешних первая быстро становится меньше второй, так что часть информации, которую физически можно было бы разместить на диске, просто «не помещается». Однако потери эти много меньше, чем при наличии всего одной зоны. Ну а по сложности реализации данный метод лишь немногим сложнее «однозонного» и куда проще подхода, при котором количество секторов было бы различным на всех дорожках.

В общем, к чему все это? К тому, что из-за блочной организации дискового пространства с точки зрения операционных систем и прочего программного обеспечения теоретическая продольная плотность записи (обычно указываемая для всего жесткого диска) на практике недостижима. Точнее, достижима она лишь для нескольких дорожек — внутренних в каждой зоне, а на внешних реальная плотность записи ниже теоретической. Впрочем, благодаря зонной организации, отличается она не так уж и сильно, так что для наших целей можно считать и продольную, и поперечную плотность записи постоянными характеристиками НЖМД. Но очень слабо зависящими от производителя — как мы увидим далее, для всех потребительских характеристик накопителя желательно, чтобы плотность записи (в обоих направлениях) была бы максимальной. Именно поэтому о плотности записи вспоминают лишь тогда, когда при смене линеек накопителей производителю удается ее увеличить. А искусственно ее занижать (по сравнению с технологически возможной) просто невыгодно. Вот и не занижают.

Теперь же, разобравшись более-менее с низкоуровневыми характеристиками винчестеров, поднимемся на уровень выше — к тем параметрам, которые нужны нам, как пользователям, на практике.