- •Вопрос 4
- •Вопрос 6
- •Вопрос 7
- •8) Интерференция на клине. Полосы равной толщины и равного наклона.
- •Вопрос 9
- •Вопрос 10
- •Вопрос 11
- •12) Дифракция в случае круглого отверстия и круглого диска. Разрешающая способность оптических приборов.
- •13) Дифракция от параллельных лучей на одной щели. Дифракционная решетка и дифракционный спектр.
- •20) Интерференция плоскополяризованных волн. Метод фотоупругости/ анализ упругих напряжений. Искусственная анизотропия, эффект Керра.
- •22) Тепловое излучение и люминесценция. Энергетическая светимость, испускательная способность, поглощательная способность. Абсолютно черное тело.
- •23) Закон Киргофа, Стефана-Больцмана и Вина. Оптическая пирометрия. Распределение энергии спектре абсолютно черного тела.
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •34) Границы применимости классической механики. Соотношение неопределенностей.
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38
- •39) Спин электрона
- •40) Распределение электронов многоэлектронных атомов. Принцип Паули. Таблица Менделеева.
- •41) Рентгеновские лучи и их спектры. Закон Мозли.
- •42)Оптические квантовые генераторы излучения/лазер. Открытый резонатор. Лазерная спектроскопия.
- •43) Радиоактивность естественная и исскуственная.
- •44) Методы наблюдения и регистрации элементарных частиц. Камера Вильсона- Скобельцын , пузырьковая камера, счетчик Гейгера-Мюллера, счетчик Черенкова.
- •45)Правила смещения. Закономерности альфа- и бета- распада.
- •46) Единицы измерения радиоактивных излучений.
- •47)Состав и характеристики атомного ядра.
- •48) Объяснение бета распада. Нейтрино.
- •49) Дефект масс, энергия связи и устойчивость атомных ядер. Правило смещения. Гамма-лучи, их происхождение и спектры. Механизм поглощения гамма-лучей веществом.
- •50) Нейтроны, взаимодействие с веществом, методы регистрации. Тепловые нейтроны.
- •51) Исскуственная радиоактивность. Деление тяжелых ядер.
- •52) Цепная ядерная реакция.
- •53) Ядерные реакторы. Основные сведения о ядерной энергетике и проблемах источников энергии.
- •54) Термоядерная реакция. Управляемая термоядерная реакция.
- •55) Элементы физики элементарных частиц.
- •Вопрос 56
- •Вопрос 57
Вопрос 9
Ньютона кольца, интерференционные полосы равной толщины в форме колец, расположенные концентрически вокруг точки касания двух поверхностей (двух сфер, плоскости и сферы и т.д.). Впервые описаны в 1675 И. Ньютоном. Интерференция светапроисходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся тела; этот зазор играет роль тонкой плёнки, см. Оптика тонких слоев. Н. к. наблюдаются и в проходящем и — более отчётливо — в отражённом свете. При освещениимонохроматическим светом длины волны Л, Н. к. представляют собой чередующиеся тёмные и светлые полосы. Светлые возникают в местах, где зазор вносит разность хода между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равную целому числу l. Тёмные кольца образуются там, где разность хода лучей равна целому нечётному числу l/2. Разность хода определяетсяоптической длиной пути луча в зазоре и изменением фазы световой волны при отражении (см. Отражение света). Так, при отражении от границы воздух — стекло фаза меняется на p, а при отражении от границы стекло — воздух остаётся неизменной. Поэтому в случае двух стеклянных поверхностей т-е тёмное Н. к. в отражённом свете соответствует разности хода ml (т. е. толщине зазора dm = ml/2), где m — целое число. При касании сферы и плоскости (рис. 1) rm = (mlR)1/2. По теореме Пифагора, для треугольников с катетами rп и rm R2 = (R — lm/2)2 + rn2 и R2 = (R — lm/2)2 + r2m, откуда следует — в пренебрежении очень малыми членами (ml/2)2 и (nl/2)2 и др.— часто используемая формула для Н. к.: R = (rn2 — r2m)/l(n — m). Эти соотношения позволяют с хорошей точностью определять l по измереннымrm и rп либо, если l известна, измерять радиусы поверхностей линз (рис. 2). Н. к. используются также для контроля правильности формы сферических и плоских поверхностей. При освещении немонохроматическим (например, белым) светом Н. к. становятся цветными, причём чередование цветов в них существенно отличается от обычного радужного из-за переналожения систем колец, соответствующих разным т. Наиболее отчётливо Н. к. наблюдаются при использовании сферических поверхностей малых радиусов кривизны (толщина зазора мала на большем расстоянии от точки касания).
Рис 1 рис 2
Интерферометр — измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков.
Интерферометры применяются как при точных измерениях длин, в частности в станкостроении и машиностроении, так и для оценки качества оптических поверхностей и проверки оптических систем в целом.