
- •Общая постановка задачи оптимизации.
- •Классическая задача на условный экстремум. Необходимые и достаточные условия условного экстремума.
- •Метод множителей Лагранжа для решения классической задачи на условный экстремум.
- •Линейные неравенства и область решений системы линейных неравенств.
- •5. Общая задача линейного программирования. Геометрическая интерпретация задачи.
- •Графический метод решения задачи линейного программирования для двух переменных.
- •Решение задачи линейного программирования симплекс–методом. Симплексные таблицы. Алгоритм симплекс–метода.
- •Решение задачи оптимизации выпуска продукции симплекс–методом.
- •Модель оптимизации плана перевозок (транспортная задача). Экономическая постановка задачи.
- •9.2 Основные свойство транспортной задачи
- •9.3 Двойственная задача
- •9.4 Теоремы двойственности
- •9.5 Построение опорного плана транспортной задачи
- •9.6 Метод севево-западного угла
- •Математическая модель транспортной задачи. Открытые и закрытые задачи. Допустимый, опорный и оптимальный планы перевозок.
- •11. Построение начального (опорного) плана перевозок по методу северо–западного угла и по методу наименьшей стоимости.
- •12. Теорема о потенциалах. Метод потенциалов. Транспортные таблицы. Понятие цикла. Сущность метода потенциалов.
- •13.Критерий оптимальности и неоптимальности опорного плана. Критерий единственности оптимального опорного плана.
- •14. Понятия испытания и случайного события. Частота и относительная частота появления события в серии испытаний. Вероятность случайного события.
- •15. Совместные и несовместные события. Полная группа событий. Событие, благоприятствующее данному. Равновозможные события. Совокупность элементарных исходов.
- •16.Классическое определение вероятности. Простейшие свойства вероятности.
- •17. Основные правила комбинаторики. Сочетания, перестановки, размещения.
- •18. Частота и относительная частота появления события в серии испытаний. Стохастическая устойчивость случайного события. Статистическое определение вероятности.
- •19. Вероятность противоположного события. Условная вероятность.
- •20. Сумма и произведение случайных событий. Теорема сложения вероятностей: для двух произвольных событий, для двух несовместных.
- •21. Теорема умножения вероятностей: для двух произвольных событий; для двух независимых событий; для нескольких событий, независимых в совокупности.
- •22. Формула полной вероятности.
- •23. Теорема Байеса.
- •24. Формула Бернулли
- •25. Локальная и интегральная теоремы Лапласа. Функции Гаусса и Лапласа.
- •26. Понятие случайной величины. Закон распределения случайной величины. Функция распределения и ее свойства.
- •1) Биномиальное распределение (дискретное)
- •2) Пуассоновское распределение (дискретное)
- •3) Показательное распределение (непрерывное)
- •4) Равномерное распределение (непрерывное)
- •5) Нормальное распределение или распределение Гаусса (непрерывное)
- •27. Дискретная случайная величина. Способы задания закона распределения дискретной случайной величины.
- •28. Числовые характеристики дискретной случайной величины: математическое ожидание, дисперсия, среднее квадратическое отклонение. Их основные свойства.
- •29. Биномиальный закон распределения.
- •30. Распределение Пуассона. Простейший поток событий.
- •Ц.П.Т. Ляпунова
- •Слабый закон больших чисел
- •Усиленный закон больших чисел
- •Значение теоремы Чебышева для практики.
- •51. Понятие критерия. Критическая область и область принятия гипотезы. Односторонняя и двусторонняя критическая область, критические точки. Мощность критерия.
- •56. Коэффициенты регрессии. Линии регрессии.
- •59. Эмпирическая и теоретическая линии регрессии.
Ц.П.Т. Ляпунова
Пусть
выполнены базовые предположения Ц.П.Т.
Линдеберга. Пусть случайные величины
имеют конечный третий момент. Тогда
определена последовательность
Если предел
(условие
Ляпунова),
то
по
распределению при
.
38) Закон больших чисел.
Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.
Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.
Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.
На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.
Слабый закон больших чисел
Тогда,
.
Усиленный закон больших чисел
Тогда,
.
Неравенство Чебышева
p( | X – M(X)| < ε ) ≥ D(X) / ε².
Доказательство. Пусть Х задается рядом распределения
Х |
х1 |
х2 |
… |
хп |
р |
р1 |
р2 |
… |
рп |
|
|
|
|
|
Так как события |X – M(X)| < ε и |X – M(X)| ≥ ε противоположны, то р ( |X – M(X)| < ε ) + + р ( |X – M(X)| ≥ ε ) = 1, следовательно, р ( |X – M(X)| < ε ) = 1 - р ( |X – M(X)| ≥ ε ). Найдем р ( |X – M(X)| ≥ ε ).
D(X) = (x1 – M(X))²p1 + (x2 – M(X))²p2 + … + (xn – M(X))²pn . Исключим из этой суммы те слагаемые, для которых |X – M(X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые kслагаемых. Тогда
D(X) ≥ (xk+1 – M(X))²pk+1 + (xk+2 – M(X))²pk+2 + … + (xn – M(X))²pn ≥ ε² (pk+1 + pk+2 + … + pn).
Отметим, что pk+1 + pk+2 + … + pn есть вероятность того, что |X – M(X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D(X) ≥ ε² р(|X – M(X)| ≥ ε), или р (|X – M(X)| ≥ ε) ≤ D(X) / ε². Тогда вероятность противоположного события p( | X – M(X)| < ε ) ≥ D(X) / ε², что и требовалось доказать
Теорема Чебышева:
Значение теоремы Чебышева для практики.
На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов. Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.
В качестве другого примера можно указать на определение качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравнительно со всей массой зерна, но само по себе оно достаточно велико.
Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.
39) Выборочный метод - статистический метод исследования общих свойств совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании).
40) Основные параметры генеральной и выборочной совокупностей
. Повторная и бесповторная выборки
При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:
При бесповторном отборе она рассчитывается по формуле:
При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:
При бесповторном способе отбора средняя ошибка выборочной доли определяется по формуле:
Репрезентати́вность — соответствие характеристик выборки характеристикам популяции или генеральной совокупности в целом. Репрезентативность определяет, насколько возможно обобщать результаты исследования с привлечением определённой выборки на всю генеральную совокупность, из которой она была собрана.
Также, репрезентативность можно определить как свойство выборочной совокупности представлять параметры генеральной совокупности, значимые с точки зрения задач исследования.