
- •Предисловие
- •Часть. 1. Теплообмен
- •1.1. Кондуктивный теплообмен в плоской стенке
- •1.2. Кондуктивный теплообмен в цилиндрической стенке
- •1.3. Конвективный теплообмен
- •1.3.1. Гидродинамический и тепловой пограничные слои на плоской пластине
- •1.3.2. Теплообмен в круглой трубе
- •1.3.3. Теплообмен с телами сложной формы
- •1.4. Теплообмен при изменении теплофизических характеристик теплоносителя и его фазового состояния
- •1.4.1. Теплоотдача при конденсации пара
- •1.4.2. Теплоотдача при кипении жидкостей
- •1.5. Теплообмен при непосредственном контакте теплоносителей
- •1.6. Радиационно-конвективная теплоотдача. Тепловое излучение
- •1.7. Оптимизация и интенсификация теплообмена
- •Контрольные вопросы
- •Часть 2. Промышленные способы передачи тепла
- •2.1. Подвод теплоты
- •2.1.1. Нагревание водяным паром и парами высокотемпературных теплоносителей
- •2.1.2. Нагревание горячими жидкостями
- •2.2. Отвод теплоты
- •2.3. Классификация и конструкция теплообменников
- •2.3.1. Рекуперативные теплообменники
- •1 Корпус аппарата; 2 змеевик; 3 металлическая стенка
- •2.3.2. Регенеративные теплообменники
- •2.3.3. Смесительные теплообменники
- •2.4. Методика расчета теплообменника
- •2.4.1. Проектный расчет теплообменника
- •2.4.2. Поверочный расчет теплообменника
- •Контрольные вопросы
- •Часть 3. Выпаривание
- •3.1. Классификация и конструкция выпарных установок
- •3.2. Однокорпусное (однократное) выпаривание
- •3.3. Температурные потери
- •3.4. Многокорпусное выпаривание
- •3.5. Полезная разность температур в многокорпусной установке и ее распределение по корпусам
- •Контрольные вопросы
- •Библиографический список
- •Оглавление
- •Зиннатуллин Назиф Хатмулович, Гурьянов Алексей Ильич, Ильин Владимир Кузьмич,
1 Корпус аппарата; 2 змеевик; 3 металлическая стенка
Змеевики внутренние погружены в теплоносители. Бывают наружные змеевиковые теплообменники (до 6 МПа). Змеевиковые теплообменники просты по конструкции. Скорости теплоносителей в змеевике небольшие, поэтому коэффициенты теплопередачи небольшие.
Теплообменники с оребренными трубами. В технике имеются случаи, когда коэффициенты теплоотдачи по обе стороны поверхности теплопередачи резко отличаются по величине. Например: нагрев воздуха конденсирующим водяным паром.
В этом случае оребрение труб со стороны воздуха резко увеличивает поверхность теплообмена (рис. 2.11). Ребра должны иметь большой коэффициент теплопроводности.
Рис. 2.11. Элементы теплообменника с оребрениями
Пластинчатые теплообменники. Поверхностью теплообмена в этих теплообменниках (рис. 2.12) являются гофрированные параллельные пластины.
Рис. 2.12. Пластинчатый теплообменник
В этих
теплообменниках реализуются большие
скорости
,
поэтому даже при небольших Δp
реализуются большие коэффициенты
теплопередачи.
Спиральные теплообменники (рис. 2.13) в отличие от пластинчатых теплообменников компактны. Однако они сложны в изготовлении и не могут работать при высоких давлениях (свыше 1 Мпа).
Рис. 2.13. Спиральный теплообменник
Теплообменники с двойными стенками (рубашками). Теплообменники с «рубашками» (рис. 2.14) используются обычно для проведения химических реакций. Они работают под избыточным давлением. В зависимости от технологического процесса они носят название: автоклавов, нитраторов, полимеризаторов, варочных аппаратов и т.д. Для увеличения коэффициента теплоотдачи от стенки к содержимому аппарата внутри него устанавливают мешалки (механические, пневматические).
Рис. 2.14. Теплообменник с греющей «рубашкой»
2.3.2. Регенеративные теплообменники
Для повышения эффективности теплотехнических систем, работающих в широком диапазоне температур, используются регенеративные теплообменники. Аккумуляция теплоты происходит в слое насадки. Слой насадки периодически омывается потоками горячего и холодного теплоносителя. Переключение регенераторов производится автоматическими клапанами. Каждый цикл состоит из двух периодов: разогрева насадки и ее охлаждения (рис. 2.15).
Рис. 2.15. Регенератор с неподвижной насадкой
Регенерирующиеся
вращающиеся подогреватели (рис. 2.16)
применяются для подогрева воздуха
дымовыми газами из котлов
.
Преимущество этих подогревателей –
процесс непрерывный (постоянная
температура нагретого воздуха), недостаток
– расход энергии
на вращение.
Регенератор с падающей насадкой работает в непрерывном режиме (рис. 2.17).
Во всех регенеративных аппаратах возможно использование специальных гранул. При нагревании покрытия ядро гранулы начинает плавиться. Гранула имеет дополнительное тепло, равное скрытой теплоте плавления материала ядра. При охлаждении гранул все тепло отдается, происходит затвердевание ядра.
Рис. 2.16. Регенеративный вращающий теплообменник |
Рис. 2.17. Регенератор с падающей насадкой |