
- •Содержание
- •Лекция 4. Качественный анализ. Анализ анионов………………………………………………………….45
- •Контрольные задания по дисциплине "Экоаналитическая химия" Теоретические вопросы………………………………………………………………146
- •Лекция 1. Экологическая аналитическая химия и физико-химические методы анализа
- •Часть 1. Основы эколого-химического анализа и применяемые в контроле окружающей среды аналитические реакции
- •Тема 1. Теоретические основы эколого-аналитической химии
- •(A)Основные термины и определения
- •Наиболее распространенные физические и физико-химические методы анализа
- •Важнейшие области применения физических и физико-химических методов анализа в экологическом мониторинге
- •Методы разделения и концентрирования
- •Некоторые указания по выполнению аналитических операций и их важнейшие характеристики
- •Контрольные вопросы (для самоподготовки):
- •Литература
- •Лекция 2
- •Количество и концентрация вещества:
- •Приготовление и измерение различными способами
- •Статья II.Измерение объемов растворов 1
- •Описание мерной посуды и правила работы с ней
- •Мерные колбы
- •Статья III.Приготовление растворов из стандарт-титров
- •Статья IV.Пипетки
- •Статья V.Бюретки
- •3.1. Определения основных понятий
- •3.2. Аналитические признаки веществ и аналитические реакции
- •Бесцветный ярко сине-голубой
- •Бесцветный ярко красный
- •Окрашивание пламени соединениями некоторых элементов
- •3.3. Типы аналитических реакций и реагентов
- •3.4. Характеристики чувствительности аналитических реакций
- •3.5. Подготовка образца к анализу
- •3.5.1. Отбор средней пробы
- •3.5.2. Растворение пробы
- •3.6. Проведение анализа
- •Литература:
- •Лекция 4. Качественный анализ. Анализ анионов
- •4.1. Аналитические реакции. Аналитический признак.
- •Дробный и систематический анализы.
- •Практические работы Лабораторная работа №1 обнаружение индивидуальных анионов и анализ смесей анионов
- •Третья группа анионов
- •Дробный анализ смеси анионов
- •Лекция 5. Качественный анализ катионов
- •5.1. Аналитическая классификация катионов по группам [1]. Статья VI. Статья VII.Введение
- •5.2. Различные аналитические классификации катионов по группам
- •Рекомендуемая литература:
- •Количественный анализ
- •Классификация методов количественного анализа
- •Требования, предъявляемые к реакциям в количественном анализе
- •Статистическая обработка результатов количественного анализа
- •Повторить некорректно проведенный анализ — это непременное правило.
- •1.4.1. Правильность и воспроизводимость результатов.
- •1.4.2. Классификация ошибок количественного анализа.
- •Количественный химический анализ гравиметрический анализ (гравиметрия)
- •Загрязнение осадков
- •Основные операции гравиметрического анализа
- •Лекция 7. Обзор методов анализа. Электрохимические инструментальные методы анализа (рН-метрия и ионселективная потенциометрия). Обзор методов анализа.
- •1. Классификация и важнейшие характеристики методов анализа, применяемых в мониторинге ос
- •2. Электрохимические методы анализа
- •Лекция 8. Спектрально–оптические методы анализа
- •Лекция 9. Хроматографические методы анализа
- •5. Другие методы анализа
- •1.1. Приборы радиационной разведки и
- •1.2. Назначение и характеристики технических средств химической разведки и химического контроля
- •Газоанализатор типа «Колион»
- •Формулы перехода от одних выражений концентраций растворов к другим
- •Вопросы к зачету по разделу курса «Экоаналитическая химия» «Качественный анализ»
- •2. Какие Вы знаете операции качественного химического анализа?
- •3. Какие бывают классификации катионов (групповые реактивы)?
- •4. Какие s-элементы составляют I и II группы катионов и каковы их свойства?
- •5. Какие p-элементы входят в состав III, IV и V групп катионов и каковы их свойства?
- •6. Какие d-элементы входят в состав IV, Vи VI групп катионов и каковы их свойства?
- •Контрольные задания по дисциплине "Экоаналитическая химия" Теоретические вопросы
- •Вопросы по методам анализа. Химические методы количественного анализа Гравиметрия
- •Титриметрические методы
- •Экстракция
- •Спектроскопические методы
- •Хроматографические методы
- •Электрохимические методы
- •Расчетные задачи по различным типам равновесия и методам анализа
- •Задания по теме "Концентрация растворов"
- •Задача 2.
- •Задача 3.
- •Задача 4.
- •Задачи и тесты для контроля усвоения темы
- •Вариант 1
- •Вариант 2
- •Вариант 4
- •Вариант 5
- •Вопросы
- •127994, Москва, ул. Образцова, 9, стр. 9
3.2. Аналитические признаки веществ и аналитические реакции
При проведении качественного и количественного анализа используют аналитические признаки веществ и аналитические реакции.
Аналитические признаки – такие свойства анализируемого вещества или продуктов его превращения, которые позволяют судить о наличии в нем тех или иных компонентов. Характерные аналитические признаки — цвет, запах, угол вращения плоскости поляризации света, радиоактивность, способность к взаимодействию с электромагнитным излучением (например, наличие характеристических полос в ИК-спектрах поглощения или максимумов в спектрах поглощения в видимой и УФ-области спектра) и др.
Аналитическая реакция — химическое превращение анализируемого вещества при действии аналитического реагента с образованием продуктов с заметными аналитическими признаками. В качестве аналитических реакций чаще всего используют реакции образования окрашенных соединений, выделение или растворение осадков, газов, образование кристаллов характерной формы, окрашивание пламени газовой горелки, образование соединений, люминесцирующих в растворах и др. На результаты проведения аналитических реакций влияют температура, концентрация растворов, рН среды, присутствие других веществ (мешающих, маскирующих, катализирующих процессы) и т.д.
Проиллюстрируем сказанное некоторыми примерами.
Образование окрашенных соединений. Ионы меди Сu2+ в водных растворах, в которых они существуют в форме почти бесцветных (бледно голубоватых) аквкомплексов [Cu(Н2О)п]2+, при взаимодействии с аммиаком образуют растворимый комплекс (аммиакат) [Cu(NH3)4]2+ яркого сине-голубого, окрашивающий раствор в тот же цвет:
[Cu(Н2О)п]2+ + 4NH3 = [Cu(NH3)4]2+ + п Н2О
Бесцветный ярко сине-голубой
С помощью этой реакции можно идентифицировать (обнаружить) ионы меди Си2+ в водных растворах.
Если в водном растворе присутствуют бесцветные (бледно желтые) ионы трехвалентного железа Fe3+ (также в форме аквокомплекса [Fe(Н20)6]3+), то при введении тиоцианат-ионов (роданид-ионов) NCS–, раствор окрашивается в интенсивный цвет вследствие образования комплексов [Fe(NCS)n(H20)6–n]3–n красного цвета:
[Fe(Н20)6]3+ + п NCS– = [Fe(NCS)n(H20)6–n]3–n + п Н2О
Бесцветный ярко красный
где п < или = 6. При этом, в зависимости от отношения концентраций [Fe(Н20)6]3+ и NCS–, образуется равновесная смесь комплексов с п = 1; 2; 3; 4; 5; 6. Все они окрашены в красный цвет. Эта реакция используется для открытия (обнаружения) ионов железа (Ш).
Заметим, что индивидуальные многозарядные ионы, например, Сu2+, Fe2+, Fе3+, Со3+, Ni2+ и т.д., так же, как и ионы водорода Н+ (т.е. протоны – ядра атома водорода), в водных растворах в обычных условиях существовать не могут, так как они термодинамически неустойчивы и взаимодействуют с молекулами воды или с другими частицами с образованием аквокомплексов (или комплексов иного состава):
М m+ + п Н2О = [М (Н2О) n ] m+ (аквокомплекс)
H+ + Н2О = H3О+ (ион гидроксония)
В дальнейшем для краткости в химических уравнениях не всегда будем указывать молекулы воды, входящие в состав аквокомплексов, помня, однако, что на самом деле в реакциях в растворах участвуют соответствующие аквокомплексы, а не «голые» катионы металлов или водорода. Так, для простоты, будем писать Н+, Сu2+, Fe 2+ и т. д. вместо более правильного Н3О+, [Cu(Н2О)4]2+, [Fe(Н20)6]3+, соответственно, и т.д.
Выделение или растворение осадков. Ионы Ва2+, присутствующие в водном растворе, можно осадить, прибавляя раствор, содержащий сульфат-ионы SO42+, в форме малорастворимого белого осадка сульфата бария:
Ва2++ SO42+ = BaSO4. ↓ (белый осадок)
Аналогичная картина наблюдается при осаждении ионов кальция Са2+ растворимыми карбонатами:
Са2+ + СО32– → СаСО3 ↓ (белый осадок)
Белый осадок карбоната кальция растворяется при действии кислот, по схеме:
СаСО3 + 2НС1 → СаС12 + СО2 ↑ +Н2О
При этом выделяется газообразный диоксид углерода.
Хлороплатинат-ионы [PtCl6]2– образуют осадки желтого цвета при прибавлении раствора, содержащего катионы калия K+ или аммония NH+. Если на раствор хлороплатината натрия Na2 [PtCl6] (эта соль довольно хорошо растворима в воде) подействовать раствором хлорида калия КСl или хлорида аммония NH4C1, то выпадают желтые осадки гексахлороплатината калия К2[PtCl6] или аммония (NH4)2[PtCl6], соответственно (эти соли мало растворимы в воде):
Na2 [PtCl6] + 2КС1 → К2[PtCl6] ↓ +2NaCl
Na2 [PtCl6] + З NH4C1 → (NH4)2[PtCl6] ↓ +2NaCl
Реакции с выделением газов (газовыделительные реакции). Выше уже приводилась реакция растворения карбоната кальция в кислотах, при которой выделяется газообразный диоксид углерода. Укажем еще на некоторые газовыделительные реакции.
Если к раствору какой-либо соли аммония прибавить щелочь, то выделяется газообразный аммиак, что можно легко определить по запаху или по посинению влажной красной лакмусовой бумаги:
NH4+ + ОН– = NН3 • Н20 → NН3 ↑ + Н20
Эта реакция используется как в качественном, так и в количественном анализе.
Сульфиды при действии кислот выделяют газообразный сероводород:
S2– + 2H+ → H2S ↑
что легко ощущается по специфическому запаху тухлых яиц.
Образование характерных кристаллов (микрокристаллоскопические реакции). Ионы натрия Na+ в капле раствора при взаимодействии с гексагидроксостибат(V)-ионами [Sb(OH)6]-- образуют белые кристаллы гексагидроксостибата(V) натрия Na[Sb(OH)6] характерной формы:
Na+ + [Sb(OH)6]-- = Na[Sb(OH)6]
Форма кристаллов хорошо видна при рассмотрении их под микроскопом. Эта реакция иногда используется в качественном анализе для открытия катионов натрия.
Ионы калия К+ при реакции в нейтральных или уксуснокислых растворах с растворимым гексанитрокупратом(П) натрия и свинца Na2Pb[Cu(N03)6] образуют черные (или коричневые) кристаллы гексанитрокупрата(П) калия и свинца К2Рb[Сu(N02)6] характерной кубической формы, которые также можно увидеть при рассмотрении под микроскопом. Реакция протекает по схеме:
2К+ + Na2Pb[Cu(N03)6] = К2Рb[Сu(N03)6] + 2Na+
Она применяется в качественном анализе для обнаружения (открытия) катионов калия. Микрокристаллоскопический анализ впервые ввел в аналитическую практику в 1794 – 1798 гг. член Петербургской академии наук Т.Е. Ловиц.
Окрашивание пламени газовой горелки. При внесении соединений некоторых металлов в пламя газовой горелки наблюдается окрашивание пламени в тот или иной цвет в зависимости от природы металла. Так, соли лития окрашивают пламя в карминово-красный цвет, соли натрия – в желтый, соли калия – в фиолетовый, соли кальция – в кирпично-красный, соли бария – в желто-зеленый и т.д.
Это явление можно объяснить следующим образом. При введении в пламя газовой горелки соединения данного металла (например, его соли) это соединение разлагается. Атомы металла, образующиеся при термическом разложении соединения, при высокой температуре пламени газовой горелки возбуждаются, т.е., поглощая определенную порцию тепловой энергии, переходят в какое-то возбужденное электронное состояние, обладающее большей энергией по сравнению с невозбужденным (основным) состоянием. Время жизни возбужденных электронных состояний атомов ничтожно мало (очень малые доли секунды), так что атомы практически мгновенно возвращаются в невозбужденное (основное) состояние, испуская поглощенную энергию в виде светового излучения с той или иной длиной волны, зависящей от разности энергии между возбужденным и основным энергетическими уровнями атома. Для атомов разных металлов эта разность энергий неодинакова и соответствует световому излучению определенной длины волны. Если это излучение лежит в видимой области спектра (в красной, желтой, зеленой или какой-то другой ее части), то человеческий глаз фиксирует ту или иную окраску пламени горелки. Окрашивание пламени — кратковременно, так как атомы металла уносятся с газообразными продуктами горения.
Окрашивание пламени газовой горелки соединениями металлов используется в качественном анализе для открытия катионов металлов, дающих излучение в видимой области спектра. На этой же физико-химической природе основаны и атомно-абсорбционные (флуоресцентные) методы анализа элементов.
В табл. 3.1 приведены примеры цветов пламени горелки от некоторых элементов.
Таблица 3.1.