Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СМИ. ВСЕ ПОЛНОСТЬЮ.docx
Скачиваний:
21
Добавлен:
17.09.2019
Размер:
793.82 Кб
Скачать

18. Устройство «горелки» индуктивно-связанной аргоновой плазмы при исп-асэ

Плазма формируется в горелке (Рис. 3) за счет поглощения рабочим газом (аргоном), высокочастотного (ВЧ) электромагнитного излучения от индуктора, присоединенного к ВЧ-генератору. Горелка изготавливается из тугоплавкого материала – кварца. Через один из газовых штуцеров в пространство между корпусом и центральной трубкой (инжектором) горелки подается плазмообразующий газ (охлаждающий газ, plasma gas, cool gas). Его расход составляет 12-14 л/мин. Профиль газового потока таков, что последний не дает плазме касаться стенок горелки. В пространство между промежуточной трубкой и инжектором подается вспомогательный поток аргона, назначение которого предотвратить контакт плазмы с торцевой частью инжектора. Расход вспомогательного газа составляет 0,7–1,5 л/мин. В инжектор подается аэрозоль из распылителя. Средний расход газа через пневматический распылитель составляет 0,8–1,2 л/мин.

Г орелка, помещается соплом в индуктор, представляющий собой 2–3 витка металлической трубки. На индуктор подается напряжение высокой частоты, составляющей 27,12 или 47,60 МГц, в зависимости от производителя прибора. Мощность, подаваемая на индуктор в стандартном режиме, составляет 1,2-1,5 кВт. Аргон, протекающий через горелку, поглощает электромагнитное излучение и ионизируется, вследствие чего возникает плазменный разряд. В качестве первичного источника ионизации выступает искровой разряд, который поджигает плазму.

Рис. 3. Схематическое изображение плазменной горелки в разрезе.

К ак и в обычном газовом факеле, температура в различных участках плазмы различается (Рис. 4).

Наивысшая температура достигается в тороидальной зоне внутри индуктора. Температура в центральном канале плазмы, в который поступает аэрозоль образца, изменяется по длине факела от 8000 К до примерно 6900 K в зоне, из которой происходит отбор ионов.

Рис. 4. Распределение температур в факеле индуктивно связанной плазмы.

19. Атомно-эмиссионная фотометрия пламени: особенности используемого горючего газа, применение.

Основными критериями предъявляемые к газу-плазмообразователю является высокая инертность и высокое сродство к электрону. Инертные газы остаются химически неактивными при очень высокой температуре, находясь в состоянии равновесной плазмы, из-за стремления ионизированного атома газа заполнить внешнюю молекулярную орбиталь. Не менее важным показателем является энергия возбуждения плазмообразующего газа, и возможность его бесконтактной ионизации.

20.Особенности атомно-абсорбционной спектрофотометрии, прмименение.

ПЛАМЕННАЯ АТОМНАЯ АБСОРБЦИЯ – обеспечивает относительно высокую скорость обработки проб при анализе большого количества образцов на ограниченное число элементов. Типичное определение одного элемента требует приблизительно от 3 до 10 секунд. Однако, пламенный АА-анализ требует специфические источники света и соответствующие параметры для каждого определяемого элемента, а также для разных элементов могут понадобиться разные газы. В результате, хотя он и часто применяется для многоэлементного анализа, пламенный атомно-абсорбционный метод обычно рассматривают как одноэлементный метод.

Электротермическая атомная абсорбция – как и пламенный АА анализ, по существу является одноэлементным методом. Так как перед атомизацией образец нужно нагревать по определенной температурной программе для удаления растворителя и матрицы, метод ЭТААС имеет сравнительно низкую производительность. При анализе в графитовой кювете определение одного элемента в одном образце обычно занимает 2-3 минуты. Очень прост, широко распространен, доступна обширная информация по приложениям, относительно недорог.