
- •Исторические этапы развития спектральных методов анализа.
- •История. 1800г. – Гершель изучал ик часть спектра. 1801г. – Риттер, уф часть спектра. 1802г. – Волостер обнаружил темные линии в спектре солнца и линейчатый спектр светящихся газов.
- •2. Классификация спектральных методов исследования
- •3 Оборудование спектральных методов исследования
- •4. Какая область спектра электромагнитного излучения используется в спектрометрических методах исследования?
- •5. Какие методы бх исследований относятся к атомной спектрометрии?
- •6. Закон бугера-ламберта-бера.
- •7. Спектральный анализ и его применение
- •8.Методы молекулярной спектрометрии.
- •9. Физический смысл и особенности оптической спектроскопии.
- •10. В чем заключается процесс «атомизации».
- •11. Схема возникновения аналитических сигналов при атомной спектрометрии.
- •12. Какие линии называют «резонансными».
- •13. Пределы обнаружения при атомно-эмиссионном и атомно-абсорбционном методах анализа.
- •14. Различия методов атомной абсорбции и атомной эмиссии.
- •17. Какую функцию выполняет монохроматор
- •18. Устройство «горелки» индуктивно-связанной аргоновой плазмы при исп-асэ
- •19. Атомно-эмиссионная фотометрия пламени: особенности используемого горючего газа, применение.
- •20.Особенности атомно-абсорбционной спектрофотометрии, прмименение.
- •21. Чем отличаются рентгеновский эмиссионный и флуоресцентный методы анализа.
- •22. На чем основаны радиометрические методы анализа. Разновидности,применение.
- •24. Принцип радиометрического метода.
- •26. На чем основан спектрофотометрический анализ.
- •27. Особенности фотометрического и фототурбидиметрического титрования.
- •28.Особенности и применение флуориметрических методов анализа.
- •29. Инфракрасная спектроскопия: особенности, принцип метода, применение.
- •30. Особенности уф спектроскопии биополимеров.
- •31. Классы хромофоров биологических полимеров.
- •Особенности поглощения аминокислотных остатков
- •33. Поглощение простетических групп в белках
- •Проявление вторичной структуры белков в уф спектрах
- •35 Уф спектры нуклеиновых кислот
- •36. Принцип устройства прибора для уф-спектроскопии и методы анализа.
- •37. Особенности ик спектроскопии.
- •38 . Принцип спектрометрии магнитного резонанса
- •Ларморовская прецессия
- •Методика измерения
- •39 . Применение спектроскопии ямр.
- •40. Электронный парамагнитный резонанс Cуть метода
- •Значение метода
- •46. Ионизация молекул
- •47. Методы регистрации ионных токов
- •50. Применение масс-спектрометрии
17. Какую функцию выполняет монохроматор
Монохроматор (моно- + chroma, chromatos цвет) — прибор для выделения оптического излучения в узком интервале длин волн; применяется при некоторых видах лабораторных исследований.
Монохроматор – это спектральный прибор для выделения узких участков спектра оптического излучения. Монохроматор состоит (рис. 14) из входной щели 1, освещаемой источником излучения, коллиматора 2, диспергирующего элемента 3, фокусирующего объектива 4 и выходной щели 5. Диспергирующий элемент пространственно разделяет лучи разных длин волн l, направляя их под разными углами υ, и в фокальной плоскости объектива 4 образуется спектр – совокупность изображений входной щели в лучах всех длин волн, испускаемых источником. Нужный участок спектра совмещают с выходной щелью поворотом диспергирующего элемента; изменяя ширину щели 5, изменяют спектральную ширину dl выделенного участка.
Рис. 14. Общая схема монохроматора: 1 - входная щель, освещаемая источником излучения; 2 - входной коллиматор; 3 - диспергирующий элемент; 4 - фокусирующий объектив выходного коллиматора; 5 - выходная щель .
Диспергирующими элементами монохроматора служат дисперсионные призмы и дифракционные решетки. Их угловая дисперсия D = ∆φ/∆λ вместе с фокусным расстоянием f объектива 4 определяют линейную дисперсию ∆l/∆f = Df (∆φ - угловая разность направлений лучей, длины волн которых отличаются на ∆λ; ∆l – расстояние в плоскости выходной щели, разделяющее эти лучи).
До недавнего времени призмы были дешевле решеток в изготовлении, они обладают большой дисперсией в УФ-области. Однако их дисперсия существенно уменьшается с ростом λ, и для разных областей спектра нужны призмы из разных материалов. Решетки свободны от этих недостатков, имеют постоянную высокую дисперсию во всем оптическом диапазоне и при заданном пределе разрешения позволяют построить монохроматор с существенно большим выходящим световым потоком, чем призменный монохроматор.
Основными характеристиками монохроматора являются: предел разрешения dl, т. е. наименьшая разность длин волн, еще различимая в выходном излучении монохроматора, либо его разрешающая способность R, определяемая, как и для любого другого спектрального прибора, отношением λ/dλ.
Объективы монохроматоров (коллиматорный и фокусирующий) могут быть линзовыми или зеркальными. Зеркальные объективы пригодны в более широком спектральном диапазоне, чем линзовые, и, в отличие от последних, не требуют перефокусировки при переходе от одного выделяемого участка спектра к другому, что особенно удобно для ИК- и УФ-областей спектра.
Р
ис.
15. Монохроматор Эберта (z-образная
симметричная схема): 1- входная щель, 2 -
сферическое зеркало, 3 - дифракционная
решетка, 4 – выходная щель.
Из большого количества существующих оптических схем благодаря небольшим габаритам при хороших спектральных характеристиках широкое распространение получили монохроматоры с дифракционной решеткой, изготовленные по схеме Черни – Тернера (рис. 16). Преимущество этой схемы перед монохроматором Эберта заключается в том, что отпадает необходимость в большом вогнутом зеркале 2 (рис. 15), которое заменяется на два зеркала меньшего размера.