
- •Исторические этапы развития спектральных методов анализа.
- •История. 1800г. – Гершель изучал ик часть спектра. 1801г. – Риттер, уф часть спектра. 1802г. – Волостер обнаружил темные линии в спектре солнца и линейчатый спектр светящихся газов.
- •2. Классификация спектральных методов исследования
- •3 Оборудование спектральных методов исследования
- •4. Какая область спектра электромагнитного излучения используется в спектрометрических методах исследования?
- •5. Какие методы бх исследований относятся к атомной спектрометрии?
- •6. Закон бугера-ламберта-бера.
- •7. Спектральный анализ и его применение
- •8.Методы молекулярной спектрометрии.
- •9. Физический смысл и особенности оптической спектроскопии.
- •10. В чем заключается процесс «атомизации».
- •11. Схема возникновения аналитических сигналов при атомной спектрометрии.
- •12. Какие линии называют «резонансными».
- •13. Пределы обнаружения при атомно-эмиссионном и атомно-абсорбционном методах анализа.
- •14. Различия методов атомной абсорбции и атомной эмиссии.
- •17. Какую функцию выполняет монохроматор
- •18. Устройство «горелки» индуктивно-связанной аргоновой плазмы при исп-асэ
- •19. Атомно-эмиссионная фотометрия пламени: особенности используемого горючего газа, применение.
- •20.Особенности атомно-абсорбционной спектрофотометрии, прмименение.
- •21. Чем отличаются рентгеновский эмиссионный и флуоресцентный методы анализа.
- •22. На чем основаны радиометрические методы анализа. Разновидности,применение.
- •24. Принцип радиометрического метода.
- •26. На чем основан спектрофотометрический анализ.
- •27. Особенности фотометрического и фототурбидиметрического титрования.
- •28.Особенности и применение флуориметрических методов анализа.
- •29. Инфракрасная спектроскопия: особенности, принцип метода, применение.
- •30. Особенности уф спектроскопии биополимеров.
- •31. Классы хромофоров биологических полимеров.
- •Особенности поглощения аминокислотных остатков
- •33. Поглощение простетических групп в белках
- •Проявление вторичной структуры белков в уф спектрах
- •35 Уф спектры нуклеиновых кислот
- •36. Принцип устройства прибора для уф-спектроскопии и методы анализа.
- •37. Особенности ик спектроскопии.
- •38 . Принцип спектрометрии магнитного резонанса
- •Ларморовская прецессия
- •Методика измерения
- •39 . Применение спектроскопии ямр.
- •40. Электронный парамагнитный резонанс Cуть метода
- •Значение метода
- •46. Ионизация молекул
- •47. Методы регистрации ионных токов
- •50. Применение масс-спектрометрии
8.Методы молекулярной спектрометрии.
СПЕКТРОМЕТРИЯ МОЛЕКУЛЯРНАЯ —гр. методов исследования хим. структуры вещества при помощи молекулярных спектров. Молекулярные спектры — электромагнитные спектры испускания и поглощения, а также комбинационного рассеяния света, наблюдающиеся при квантовых переходах между энергетическими состояниями молекулы. По диапазонам длин волн (λ) выделяют инфракрасную спектрометрию (ИКС, λ > 7600 Å) и ультрафиолетовую спектрометрию (УФС, λ < 4000 Å); интервал между ними занимает спектрометрия видимой обл. света. К С. м. относится изучение спектров люминесценции, радиоспектроскопия (λ > 1 мм), спектры ядерного, магнитного, протонного и электронного парамагнитного резонанса, хим. масс-спектрометрия и др. Характер молекулярных спектров связан со строением молекул. Методы С. м. относятся к основным физ. методам изучения строения вещества; с помощью их осуществляется: 1) определение строения молекул — наличия в них определенных структурных гр. и связей; 2) количественное определение разл. веществ в смесях; 3) вычисление молекулярных констант.
9. Физический смысл и особенности оптической спектроскопии.
К оптическим методам анализа относят физико-химические методы, основанные на взаимодействии электромагнитного излучения с веществом. Это взаимодействие приводит к различным энергетическим переходам, которые регистрируются экспериментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения. Оптические методы включают в себя большую группу спектральных методов анализа.
1. Спектроскопия оптического поглощения
2. Спектроскопия фотолюминесценции
3. Рамановская спектроскопия
4. Люминесцентная и флуоресцентная микроскопия
Спектроскопия оптического поглощения - спектроскопия в оптическом (видимом) диапазоне длин волн с примыкающими к нему ультрафиолетовым и инфракрасным диапазонами (от нескольких сотен нанометров до единиц микрон). Этим методом получено подавляющее большинство информации о том, как устроено вещество на атомном и молекулярном уровне, как атомы и молекулы ведут себя при объединении в конденсированные вещества.
Особенность оптической спектроскопии по сравнению с другими видами спектроскопии состоит в том, что большинство структурно организованной материи (крупнее атомов) резонансно взаимодействует с электромагнитным полем именно в оптическом диапазоне частот. Поэтому именно оптическая спектроскопия используется в настоящее время очень широко для получения информации о веществе.
Фотолюминесценция - люминесценция, возбуждаемая светом. Простейший случай фотолюминесценции - резонансное излучение. В этом случае, излучение на выходе среды происходит на той же частоте, что и частота падающего света.
Рамановская спектроскопия или комбинационное рассеяние света (эффект Рамана) — неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В отличие от рэлеевского рассеяния, в случае комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.
Спектроскопия комбинационного рассеяния света - эффективный метод химического анализа, изучения состава и строения веществ.
Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) заключается в наблюдении под М. зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. При этом методе в оптическую схему вводятся два светофильтра. Первый из них помещают перед конденсором; он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, установленный после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют как освещение препаратов сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен возбуждение свечения препарата не является простым отражением света); его часто сочетают с наблюдением по фазово-контрастному методу в проходящем свете.