
- •1.Основные сведения из истории развития электроники.
- •2.Электропроводность полупроводников.
- •3.Удельная проводимость пп
- •4.Примесная проводимость
- •5.Зонная диаграмма пп с донорной примесью
- •6.Зонная диаграмма пп с акцепторной примесью
- •7.Понятие о потенциале и уровне Ферми для пп материалов.
- •8.Электрические переходы между двумя различными материалами
- •9.Электрические переходы между металлом и пп.
- •10.Процессы в p-n-переходе.
- •11.Прямое смещение pn перехода.
- •12.Обратное смещение pn перехода.
- •14.Емкость pn- перхода
- •15.Пробой pn перхода.
- •16.Устройство: принцип действия и вах полупроводникового диода.
- •17.Классификация и система обозначения Диодов
- •18.Устройство, принцип действия и вах стабилитрона.
- •19.Классификация и система обозначения стабилитронов.
- •20.Биполярный транзистор: устройство, принцип действия.
- •21.Типы транзисторов: устройство, принцип действия.
- •22.Схемы включения транзисторов.
- •23.Основные соотношения для токов в структуре
- •24.Математическая модель транзистора.
- •25.Уравнения Эберса-Молла
- •26.Эквивалентная схема транзистора для постоянного тока об: основные соотношения и характеристики
- •27.Эквивалентная схема транзистора для постоянного тока оэ: основные соотношения и характеристики
- •28.Базовые характеристики биполярного транзистора, включенного по схеме об.
- •29.Выходные характеристики биполярного транзистора, включенного по схеме об.
- •30.Базовые характеристики биполярного транзистора, включенного по схеме оэ.
- •31.Выходные характеристики биполярного транзистора, включенного по схеме оэ.
- •32.Основные режимы работы биполярного транзистора
- •33.Биполярный транзистор как активный 4-х полюсник
- •35.Схема замещения транзистора для h-параметров.
- •36.Основные параметры биполярного транзистора.
- •37.Эквивалентные схемы биполярных транзисторов для переменного тока.
- •38.Зависимость основных параметров биполярного транзистора от температуры.
- •39.Классификация и система обозначения биполярных транзисторов.
- •40.Структура и принцип работы полевого транзистора с управляемым p-n переходом
- •41.Основные характеристики полевого транзистора с управляемым p-n переходом
- •42.Основные параметры полевого транзистора с управляемым p-n переходом
- •43.Соотношения между параметрами полевого транзистора с управляемым p-n переходом
- •44.Эквивалентные схемы полевого транзистора для переменного тока.
- •45.Основные схемы включения полевого транзистора
- •46.Зависимость параметров полевого транзистора с управляющим p-n переходом от температуры
- •50.Стоко-затворные характеристики моп транзисторов с индуцированным каналом
- •51.Статические стоковые характеристики моп-транзисторов с индуцированным каналом
- •52.Влияние потенциала подложки на характеристики управления моп-транзистора
- •53.Структура мноп: принцип действия и область использования.
- •55.Классификация, система обозначения и характеристики полевого транзистора
- •56.Структура, принцип действия и вах туннельного диода
- •57.Структура, принцип действия и вах двухбазового диода
- •58.Основные соотношения для токов и напряжений однопереходного транзистора
- •59.Транзисторный аналог двухбазового диода.
- •60.Лавинный транзистор: схема включения и основные параметры
- •61.Вах лавинного транзистора, область использования
- •62.Динистор: структура и принцип действия
- •63.Динистор: вах , основные соотношения для токов
- •64.Тиристор: структура, принцип действия
- •65.Тиристор: вах при управлении по катоду, и основные соотношения для токов
- •66.Классификация и система обозначений тиристоров.
- •67.Основные достоинства оптоэлектронных приборов
- •68.Светодиоды: принцип действия, основные характеристики, эквивалентные схемы
- •69.Основные параметры светодиодов
- •70.Основные параметры и характеристика фоторезисторов
- •71.Фотодиоды: структура, принцип действия, основные режимы работы
- •72.Основные параметры и характеристики фотодиодов
- •73.Фототранзисторы: принцип действия, основные режимы
- •74.Основные характеристики и параметры фототранзисторов.
- •75.Фоторезисторы: структура, классификация, основные параметры
- •76.Устройства отображения информации: назначение, классификация.
- •77.Принцип действия и способы управления вакуумными люминесцентными индикаторами.
- •78. Устройство, принцип действия и область использования жидко-кристаллических индикаторов (жки)
- •79.Разновидности и способы управления ими
- •80.Пп знакосинтезирующие индикаторы: устройство, принцип действия
- •81.Многоэлементные пп зси устройство, область использования.
- •82.Принцип работы лазера, свойства лазерного излучения
- •83.Основные типы лазеров, основные области использования лазерного излучения
- •84.Пп приборы с зарядовой связью: устройство, принцип действия, режимы работы, область применения
- •85.Усилители электрических сигналов: основные параметры и характеристики
- •86.Принцип действия усилительного каскада на транзисторе
- •87.Усилительный каскад на транзисторе, включенном по схеме оэ
- •88.Определение коэффициентов усиления тока и напряжения в схеме каскада оэ
- •89.Температурная компенсация каскада оэ
- •90.Эмиттерный повторитель: схемы и основные соотношения.
- •91.Определение коэффициентов усиления тока и напряжения в схеме ок
- •92.Усилительный каскад с общей базой (об схема и основные соотношения)
- •93.Усилительные каскады на полевых транзисторах: схемы и основные соотношения
- •94.Истоковый повторитель: схема и основные соотношения
- •95.Режимы усилительных каскадов
- •96.Графо-аналитический анализ работы усилительного каскада
- •97.Усилители мощности с трансформаторным включением нагрузки
- •98.Бестрансформаторные усилители мощности
- •99.Понятие об усилителях постоянного тока
10.Процессы в p-n-переходе.
Это электронной переход ПП имеющих различный тип проводимости, (если концентрации зарядов p и n равны то переход несимметричный).
В виду того что концентрации дырок больше, то дырки попадают из n в p область рекомбинируют и создают в приграничной области повышенное концентрацию положительных зарядов. Электроны при переходе рекомбинируют с дырками, создавая повышенную концентрацию отрицательных зарядов.
В результате на границе раздела образуется система 2 зарядов в области n- система положительных зарядов, а в области p- систему отрицательных зарядов.
Область образовавшихся зарядов называют областью pn-переход. В этой области концентрация основных носителей заряда понижена, следовательно удельное сопротивление в pn области выше, чем в других областях. Результирующий ток равен нулю.
Поле созданное в области pn перехода препятствует проходу основных зарядов и не препятствует проходу других зарядов.
Uk — контактная разность потенциалов. Принято: Ge – Uk=(0.32-0.4) В; Si – Uk=0.7 B.
11.Прямое смещение pn перехода.
Смещением называется подача на переход постоянного напряжения.
Если подать + на р- область, а «—» на n- область, то получим прямое смещение.
(рисунок)
Если подать прямое смещение, то потенциальный барьер уменьшиться т.к. Внешнее поле противоположно внутреннему (Uk) и результирующая разность станет меньше. Условный размер перехода уменьшается.
Можно отметить, что до момента, когда Uk>U ток возрастает незначительно. Если Uk<=U то исчезает барьер и возникает ток, обусловленный током дрейфа и диффузии.
В pn переходе проявляется явление инжекции: внесение заряда в зону, где он является основным.
Инжектируемый слой с большой концентрацией зарядов называется эммитером, а с малой концентрацией — базой.
Прямой ток, возникающий за счет барьера, связан с приложенным напряжением выражением
It0 – ток через pn, ток насыщения.
phi_T – тепловой потенциал.
Так же присутствует ток диффузии
12.Обратное смещение pn перехода.
Смещенеим называется подача на преход постоянного напряжения.
Если подать «-» на р- область, а «+» на n- область, то получим обратное смещение.
(рисунок)
Обратный ток насыщения существенно зависти от температуры.в случае обратного смещения потенциальный барьер увеличивается. Ток такой цепи обусловлен не основным зарядом.
Процесс вытягивания поля называется экстракцией
phi_T = 0.022 В
В обратном направлении течет малый ток не зависящий от напрюжения, а зависит экспоненциально от температуры.
13.ВАХ pn-перехода
Нарисовать ВАХ.
14.Емкость pn- перхода
При рассмотрении pn- перехода устанавливается, что толщина перехода дулируется, при этом по обе стороня границы имеются электрические заряды, от сюда следует, что имеются границы pn перхода как обкладки конденсатора.
Различают 2 составляющих емкости:1) барьерная — распределяется в pn перходе; 2) диффузионная — распространяется в близи пререхода.
При прямом смещении проявляется диффузионная емкость, а при обратном - - барьерная.
n =(2..3) в зависимости от вида перехода.
По структуре видно, что с увеличением обратного напряжения барьерная емкость уменьшается. Диффузионная емкость значительно ниже барьерной и очень слабо зависит от напряжения, поэтому в электронике применяется барьерная емкость.