
- •1.Основные сведения из истории развития электроники.
- •2.Электропроводность полупроводников.
- •3.Удельная проводимость пп
- •4.Примесная проводимость
- •5.Зонная диаграмма пп с донорной примесью
- •6.Зонная диаграмма пп с акцепторной примесью
- •7.Понятие о потенциале и уровне Ферми для пп материалов.
- •8.Электрические переходы между двумя различными материалами
- •9.Электрические переходы между металлом и пп.
- •10.Процессы в p-n-переходе.
- •11.Прямое смещение pn перехода.
- •12.Обратное смещение pn перехода.
- •14.Емкость pn- перхода
- •15.Пробой pn перхода.
- •16.Устройство: принцип действия и вах полупроводникового диода.
- •17.Классификация и система обозначения Диодов
- •18.Устройство, принцип действия и вах стабилитрона.
- •19.Классификация и система обозначения стабилитронов.
- •20.Биполярный транзистор: устройство, принцип действия.
- •21.Типы транзисторов: устройство, принцип действия.
- •22.Схемы включения транзисторов.
- •23.Основные соотношения для токов в структуре
- •24.Математическая модель транзистора.
- •25.Уравнения Эберса-Молла
- •26.Эквивалентная схема транзистора для постоянного тока об: основные соотношения и характеристики
- •27.Эквивалентная схема транзистора для постоянного тока оэ: основные соотношения и характеристики
- •28.Базовые характеристики биполярного транзистора, включенного по схеме об.
- •29.Выходные характеристики биполярного транзистора, включенного по схеме об.
- •30.Базовые характеристики биполярного транзистора, включенного по схеме оэ.
- •31.Выходные характеристики биполярного транзистора, включенного по схеме оэ.
- •32.Основные режимы работы биполярного транзистора
- •33.Биполярный транзистор как активный 4-х полюсник
- •35.Схема замещения транзистора для h-параметров.
- •36.Основные параметры биполярного транзистора.
- •37.Эквивалентные схемы биполярных транзисторов для переменного тока.
- •38.Зависимость основных параметров биполярного транзистора от температуры.
- •39.Классификация и система обозначения биполярных транзисторов.
- •40.Структура и принцип работы полевого транзистора с управляемым p-n переходом
- •41.Основные характеристики полевого транзистора с управляемым p-n переходом
- •42.Основные параметры полевого транзистора с управляемым p-n переходом
- •43.Соотношения между параметрами полевого транзистора с управляемым p-n переходом
- •44.Эквивалентные схемы полевого транзистора для переменного тока.
- •45.Основные схемы включения полевого транзистора
- •46.Зависимость параметров полевого транзистора с управляющим p-n переходом от температуры
- •50.Стоко-затворные характеристики моп транзисторов с индуцированным каналом
- •51.Статические стоковые характеристики моп-транзисторов с индуцированным каналом
- •52.Влияние потенциала подложки на характеристики управления моп-транзистора
- •53.Структура мноп: принцип действия и область использования.
- •55.Классификация, система обозначения и характеристики полевого транзистора
- •56.Структура, принцип действия и вах туннельного диода
- •57.Структура, принцип действия и вах двухбазового диода
- •58.Основные соотношения для токов и напряжений однопереходного транзистора
- •59.Транзисторный аналог двухбазового диода.
- •60.Лавинный транзистор: схема включения и основные параметры
- •61.Вах лавинного транзистора, область использования
- •62.Динистор: структура и принцип действия
- •63.Динистор: вах , основные соотношения для токов
- •64.Тиристор: структура, принцип действия
- •65.Тиристор: вах при управлении по катоду, и основные соотношения для токов
- •66.Классификация и система обозначений тиристоров.
- •67.Основные достоинства оптоэлектронных приборов
- •68.Светодиоды: принцип действия, основные характеристики, эквивалентные схемы
- •69.Основные параметры светодиодов
- •70.Основные параметры и характеристика фоторезисторов
- •71.Фотодиоды: структура, принцип действия, основные режимы работы
- •72.Основные параметры и характеристики фотодиодов
- •73.Фототранзисторы: принцип действия, основные режимы
- •74.Основные характеристики и параметры фототранзисторов.
- •75.Фоторезисторы: структура, классификация, основные параметры
- •76.Устройства отображения информации: назначение, классификация.
- •77.Принцип действия и способы управления вакуумными люминесцентными индикаторами.
- •78. Устройство, принцип действия и область использования жидко-кристаллических индикаторов (жки)
- •79.Разновидности и способы управления ими
- •80.Пп знакосинтезирующие индикаторы: устройство, принцип действия
- •81.Многоэлементные пп зси устройство, область использования.
- •82.Принцип работы лазера, свойства лазерного излучения
- •83.Основные типы лазеров, основные области использования лазерного излучения
- •84.Пп приборы с зарядовой связью: устройство, принцип действия, режимы работы, область применения
- •85.Усилители электрических сигналов: основные параметры и характеристики
- •86.Принцип действия усилительного каскада на транзисторе
- •87.Усилительный каскад на транзисторе, включенном по схеме оэ
- •88.Определение коэффициентов усиления тока и напряжения в схеме каскада оэ
- •89.Температурная компенсация каскада оэ
- •90.Эмиттерный повторитель: схемы и основные соотношения.
- •91.Определение коэффициентов усиления тока и напряжения в схеме ок
- •92.Усилительный каскад с общей базой (об схема и основные соотношения)
- •93.Усилительные каскады на полевых транзисторах: схемы и основные соотношения
- •94.Истоковый повторитель: схема и основные соотношения
- •95.Режимы усилительных каскадов
- •96.Графо-аналитический анализ работы усилительного каскада
- •97.Усилители мощности с трансформаторным включением нагрузки
- •98.Бестрансформаторные усилители мощности
- •99.Понятие об усилителях постоянного тока
5.Зонная диаграмма пп с донорной примесью
Валентность примеси больше валентности основного материала (Ge + Сурьма). В этом случае появляется свободный электрон, связи ковалентные. Донорная примесь. Электропроводность — электронная, а ПП n- типа.
E
с
— уровень энергии дна зоны проводимости
Еv — уровень энергии потолка зоны проводимости
Ед — уровнь энергии донорной примеси.
6.Зонная диаграмма пп с акцепторной примесью
Валентность примеси меньше, чем у основного манериала (Ge + In). В этом случае, чтобы образовать кристаллическую решетку индий «отбирает» электрон у германия. Отметим, что индий отбитая электрон связивает германий в ковалентную связь и образуется дырка, те положительно заряженый германий. Такой вид примеси называется акцепторный. Электропроводность — дырочная, а ПП p- типа.
E
с
— уровень энергии дна зоны проводимости
Еv — уровень энергии потолка зоны проводимости
Еа — уровнь энергии акцепторной примеси.
7.Понятие о потенциале и уровне Ферми для пп материалов.
В теории ПП взаимодействия
и св-ва зарядов характеризуется не самой
энергией, а потенциалом
.
В расчетах появляется температурный
потенциал
,
где k — постоянная
Больцмана; T — абсолютная
температура.
n*p = const при T=const и зависит от ширины ЗЗ
обычно используется потенциал уровня Ферми.
Nd – концентрация донорной примеси
ni — собственная концентрация зарядов.
Na — концентрация акцепторной примеси
pi — собственная концентрация дырок
phi_p — электростатический потенциал (в середине ЗЗ)
Уровень энергии зависит от концентрации примеси и собственной концентрации.
8.Электрические переходы между двумя различными материалами
Это граничный слой между двумя областями материалов физические характеристики которых различны.
Переходы могут быть pn- переходы (электронно-дырочные); n+n- переходы (электронно-электронные, с различными концентрациями); p+p (гетеропереходы имеют различную ширину ЗЗ); p-i (проводимость в одной зоне собственная а в другой примесная); n-i; p-i-n; металл-ПП.
Электрические переходы образуются не механическим соединением, а по специальным технологиям
9.Электрические переходы между металлом и пп.
Это граничный слой между двумя областями материалов физические характеристики которых различны.
П
ри
образовании перехода металл-ПП происходит
процесс выравнивания уровня Ферми за
счет того, что потенциал
электроны
переходят в область проводимости, там
рекомбинируют с дырками и образуют слой
положительных ионов.
Процесс будет идти до тех пор пока не уровняются уровни Ферми и установится динамическое равновесие, результирующий ток равен нуню.
Отметим, что образовавшиеся электрическое поле препятствует прохождению основных зарядов.
В ПП в области перехода концентрация дырок уменьшится, а следовательно этот элемент имеет повышенное сопротивление.
Два варианта включения в цепь: прямое и обратное.
Внешнее электрическое поле направленно на встречу внутреннему, происходит ослабление преграды ток в цепи увеличивается.
Внешнее поле складывается со внутренним увеличивается преграда тог падает.
В результате анализа опыта можно обнаружить, что в первом случае ток проходит беспрепятственно, а во втором ток не будет проходить, т.е. обнаружена односторонняя проводимость.
Для практики особенно важно когда уровень Ферми металла меньше уровня Ферми ПП p- типа, или выше ПП n- типа. В этом случае наружный заряд обогащается и сопротивление понижается.