
- •1.Основные сведения из истории развития электроники.
- •2.Электропроводность полупроводников.
- •3.Удельная проводимость пп
- •4.Примесная проводимость
- •5.Зонная диаграмма пп с донорной примесью
- •6.Зонная диаграмма пп с акцепторной примесью
- •7.Понятие о потенциале и уровне Ферми для пп материалов.
- •8.Электрические переходы между двумя различными материалами
- •9.Электрические переходы между металлом и пп.
- •10.Процессы в p-n-переходе.
- •11.Прямое смещение pn перехода.
- •12.Обратное смещение pn перехода.
- •14.Емкость pn- перхода
- •15.Пробой pn перхода.
- •16.Устройство: принцип действия и вах полупроводникового диода.
- •17.Классификация и система обозначения Диодов
- •18.Устройство, принцип действия и вах стабилитрона.
- •19.Классификация и система обозначения стабилитронов.
- •20.Биполярный транзистор: устройство, принцип действия.
- •21.Типы транзисторов: устройство, принцип действия.
- •22.Схемы включения транзисторов.
- •23.Основные соотношения для токов в структуре
- •24.Математическая модель транзистора.
- •25.Уравнения Эберса-Молла
- •26.Эквивалентная схема транзистора для постоянного тока об: основные соотношения и характеристики
- •27.Эквивалентная схема транзистора для постоянного тока оэ: основные соотношения и характеристики
- •28.Базовые характеристики биполярного транзистора, включенного по схеме об.
- •29.Выходные характеристики биполярного транзистора, включенного по схеме об.
- •30.Базовые характеристики биполярного транзистора, включенного по схеме оэ.
- •31.Выходные характеристики биполярного транзистора, включенного по схеме оэ.
- •32.Основные режимы работы биполярного транзистора
- •33.Биполярный транзистор как активный 4-х полюсник
- •35.Схема замещения транзистора для h-параметров.
- •36.Основные параметры биполярного транзистора.
- •37.Эквивалентные схемы биполярных транзисторов для переменного тока.
- •38.Зависимость основных параметров биполярного транзистора от температуры.
- •39.Классификация и система обозначения биполярных транзисторов.
- •40.Структура и принцип работы полевого транзистора с управляемым p-n переходом
- •41.Основные характеристики полевого транзистора с управляемым p-n переходом
- •42.Основные параметры полевого транзистора с управляемым p-n переходом
- •43.Соотношения между параметрами полевого транзистора с управляемым p-n переходом
- •44.Эквивалентные схемы полевого транзистора для переменного тока.
- •45.Основные схемы включения полевого транзистора
- •46.Зависимость параметров полевого транзистора с управляющим p-n переходом от температуры
- •50.Стоко-затворные характеристики моп транзисторов с индуцированным каналом
- •51.Статические стоковые характеристики моп-транзисторов с индуцированным каналом
- •52.Влияние потенциала подложки на характеристики управления моп-транзистора
- •53.Структура мноп: принцип действия и область использования.
- •55.Классификация, система обозначения и характеристики полевого транзистора
- •56.Структура, принцип действия и вах туннельного диода
- •57.Структура, принцип действия и вах двухбазового диода
- •58.Основные соотношения для токов и напряжений однопереходного транзистора
- •59.Транзисторный аналог двухбазового диода.
- •60.Лавинный транзистор: схема включения и основные параметры
- •61.Вах лавинного транзистора, область использования
- •62.Динистор: структура и принцип действия
- •63.Динистор: вах , основные соотношения для токов
- •64.Тиристор: структура, принцип действия
- •65.Тиристор: вах при управлении по катоду, и основные соотношения для токов
- •66.Классификация и система обозначений тиристоров.
- •67.Основные достоинства оптоэлектронных приборов
- •68.Светодиоды: принцип действия, основные характеристики, эквивалентные схемы
- •69.Основные параметры светодиодов
- •70.Основные параметры и характеристика фоторезисторов
- •71.Фотодиоды: структура, принцип действия, основные режимы работы
- •72.Основные параметры и характеристики фотодиодов
- •73.Фототранзисторы: принцип действия, основные режимы
- •74.Основные характеристики и параметры фототранзисторов.
- •75.Фоторезисторы: структура, классификация, основные параметры
- •76.Устройства отображения информации: назначение, классификация.
- •77.Принцип действия и способы управления вакуумными люминесцентными индикаторами.
- •78. Устройство, принцип действия и область использования жидко-кристаллических индикаторов (жки)
- •79.Разновидности и способы управления ими
- •80.Пп знакосинтезирующие индикаторы: устройство, принцип действия
- •81.Многоэлементные пп зси устройство, область использования.
- •82.Принцип работы лазера, свойства лазерного излучения
- •83.Основные типы лазеров, основные области использования лазерного излучения
- •84.Пп приборы с зарядовой связью: устройство, принцип действия, режимы работы, область применения
- •85.Усилители электрических сигналов: основные параметры и характеристики
- •86.Принцип действия усилительного каскада на транзисторе
- •87.Усилительный каскад на транзисторе, включенном по схеме оэ
- •88.Определение коэффициентов усиления тока и напряжения в схеме каскада оэ
- •89.Температурная компенсация каскада оэ
- •90.Эмиттерный повторитель: схемы и основные соотношения.
- •91.Определение коэффициентов усиления тока и напряжения в схеме ок
- •92.Усилительный каскад с общей базой (об схема и основные соотношения)
- •93.Усилительные каскады на полевых транзисторах: схемы и основные соотношения
- •94.Истоковый повторитель: схема и основные соотношения
- •95.Режимы усилительных каскадов
- •96.Графо-аналитический анализ работы усилительного каскада
- •97.Усилители мощности с трансформаторным включением нагрузки
- •98.Бестрансформаторные усилители мощности
- •99.Понятие об усилителях постоянного тока
55.Классификация, система обозначения и характеристики полевого транзистора
Полевые транзисторы можно разделить на две большие группы: полевые транзисторы с управляющим pn - переходом и полевые транзисторы со структурой металл-диэлектрик полупроводник (МДП). Поскольку в качестве диэлектрика часто используется окисел кремния, поэтому транзисторы этого типа называют еще МОП - транзисторами (по первым буквам сочетания слов: металл - окисел - полупроводник). Для обозначения подкласса полевых транзисторов используется буква П. Поскольку эти транзисторы выполняют те же функции, что и биполярные, для них в классификационном обозначении используется тот же элемент, что и для биполярных транзисторов (см. табл. 4, третью колонку). Так например, полевые транзисторы могут имеет следующие марки*: КП101, КП201, КП301, КП901 и т.п.
Рис. 18. Графические обозначения полевых транзисторов: 1 - полевой транзистор с n - каналом, 2 - полевой транзистор с p - каналом, 3 - полевой транзистор с изолированным затвором и p - каналом, 4 - полевой транзистор с изолированным затвором и n - каналом.
Поскольку полевые транзисторы являются униполярными приборами, тип канала, по которому протекает ток, определяется типом основных носителей заряда и может быть как p-типа, так и n- типа.
Полевые транзисторы являются универсальными усилительными приборами и они, так же как и биполярные транзисторы могут применяться в схемах самого разного назначения.
56.Структура, принцип действия и вах туннельного диода
Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.
57.Структура, принцип действия и вах двухбазового диода
представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором:
Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название - двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов ОПТ представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда ОПТ находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.
Участок между базами образован кремниевой пластиной n-типа и имеет линейную вольтамперную характеристику, т.е. ток через этот участок прямо пропорционален приложенному межбазовому напряжению. При отсутствии напряжения на эмиттере (относительно Б1) за счёт проходящего I2 в базе 1 внутри кристалла создаётся падение напряжения Uвн, запирающее p-n переход, При подаче на вход небольшого напряжения Uвх=<Uвн величина тока, проходящего через переход,почти не изменяется. При Uвх>Uвн переход смещается в прямом направлении и начинается инжекция носителей заряда (дырок) в базы, приводящая к снижению их сопротивления. При этом уменьшается падение напряжения Uвн, что приводит к лавинообразному отпиранию перехода - участок II на воль-амперной характеристике:
При Uмб = 0 ВАХ представляет обычную ВАХ p-n перехода