Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л_11.doc
Скачиваний:
15
Добавлен:
15.09.2019
Размер:
1.43 Mб
Скачать

Лекция № 11 реалистичное представление сцен

Для того, чтобы получить наиболее реалистичное изображение, нужно обязательно рассмотреть следующие факторы:

  • Модели освещения и тени;

  • Механизмы отражения света и прозрачность;

  • Модели закраски;

  • Материалы (текстуры);

  • Трассировка лучей;

  • Излучательность или взаимное отражение.

Модели освещения и механизмы отражения света

Классификация источников и поверхностей

При взаимодействии источник-поверхность имеет большое значение типы соответственно источников и поверхностей, классификация которых может быть представлена в следующем виде:

Источники света

  • излучающие и отражающие источники;

  • точечные источники;

  • распределенные источники;

  • рассеянный свет

Поверхности

  • отражающие;

  • поглощающие;

  • полупрозрачные;

  • рассеивающие.

Модели отражения света

Когда свет попадает на поверхность, он может поглощаться, передавать­ся или рассеиваться; обычно имеют место все три явления. Например, свет, попадающий на кожу, может рассеиваться на тканях на различной глубине и отражаться от крови и меланина в них, может поглощаться или рассеивать­ся параллельно коже в пределах тонкого слоя жира, а затем выходить наружу в какой-то другой точке.

Картина еще более усложняется способностью некоторых поверхностей по­глощать свет одной длины волны с последующим излучением света другой длины волны. Этот эффект, называемый флуоресценцией, общеизвестен: под рентгеновским излучением скорпионы излучают свет в видимом диапазоне; че­ловеческие зубы флуоресцируют бледно-голубым светом под действием ультра­фиолетового излучения. Кроме того, если поверхность нагреть доста­точно сильно, она будет излучать в видимом диапазоне. Рассмотрим самые простейшие случаи отражения.

На рисунке ниже

Отражение: а – идеальное зеркало,

б – неидеальное зеркало (зеркальный лепесток),

в – диффузное,

г – сумма диффузного и зеркального,

д – обратное,

е – сумма диффузного, зеркального и обратного.

Зеркальное отражение света. Угол между нормалью и падающим лучом равен углу между нормалью и отраженным лучом. Падающий луч, отраженный, и нормаль располагаются в одной плоскости.

Поверхность считается идеально зеркальной, если на ней отсутствуют какие-либо неровности, шероховатости. Собственный цвет у такой поверхности не наблюдается. Световая энергия падающего луча отражается только по линии отраженного луча. Какое-либо рассеяние в стороны от этой линии отсутствует. В природе нет идеально гладких поверхностей, поэтому полагают, что если глубина шероховатостей существенно меньше длины волны излучения, то рассеивания не наблюдается. Для видимого спектра можно принять, что глубина шероховатостей поверхности зеркала должна быть существенно меньше 0.5 мкм.

Если поверхность зеркала отполирована неидеально, то наблюдается зависимость интенсивности отраженного света от длины волны – чем больше длина волны, тем лучше отражение. Например, красные лучи отражаются сильнее, чем синие.

При наличии шероховатостей имеется зависимость интенсивности отраженного света от угла падения. Отражение света максимально для углов близких к 90 градусам. Падающий луч, попадая на слегка шероховатую поверхность реального зеркала, порождает не один отраженный луч, а несколько лучей, рассеиваемых по различным направлениям. Зона рассеивания зависит от качества полировки и может быть описана некоторым законом распределения. Как правило, форма зоны рассеивания симметрична относительно линии идеального зеркально отраженного луча. К числу простейших, но достаточно часто используемых, относится эмпирическая модель распределения Фонга, согласно которой интенсивность зеркально отраженного излучения пропорциональна (cos a)Р, где а – угол отклонения от линии идеально отраженного луча. Показатель р находится в диапазоне от 1 до 200 и зависит от качества полировки. Запишем это таким образом:

где – интенсивность излучения источника,

– коэффициент пропорциональности.

Диффузное отражение. Этот вид отражения присущ матовым поверхно­стям. Матовой можно считать такую поверхность, размер шероховатостей которой уже настолько велик, что падающий луч рассеивается равномерно во все стороны. Такой тип отражения характерен, например, для гипса, песка, бумаги. Диффузное отражение описывается законом Ламберта, согласно ко­торому интенсивность отраженного света пропорциональна косинусу угла между направлением на точечный источник света и нормалью к поверхности: ,

где – интенсивность источника света,

– коэффициент, который учиты­вает свойства материала поверхности. Его значение находится в диапазоне от 0 до 1.

Интенсивность отраженного света не зависит от расположения наблюдателя.

Матовая поверхность имеет свой цвет. Наблюдаемый цвет матовой поверх­ности определяется комбинацией собственного цвета поверхности и цвета излучения источника света.

Комбинированное отражение. Не существует идеально зеркальных или полностью матовых поверхностей. При изображении объектов средствами компьютерной графи­ки обычно моделируют сочетание зеркальности и диффузного рассеивания в пропорции, характерной для конкретного материала.

В этом случае модель отражения записывают в виде суммы диффузной и зеркальной компонент:

, где константы определяют отражательные свойства материала.

Согласно этой формуле интенсивность отраженного света равна нулю для некоторых углов θ и а. Однако в реальных сценах обычно нет полностью за­темненных объектов, следует учитывать фоновую подсветку, освещение рас­сеянным светом, отраженным от других объектов. В таком случае интенсивность может быть эмпирически выражена следующей формулой:

– интенсивность рассеянного света, Ка – константа.

Можно еще усовершенствовать модель отражения, если учесть то, что энергия от точечного источника света уменьшается пропорционально квадрату расстояния.

Прозрачность. Может быть рассчитана без учета преломления и с учетом преломления света.

Прозрачность без учета преломления света. В простейших моделях прозрачности преломление не учитывается. При расчетах по такой модели могут использоваться любые алгоритмы удаления невидимых поверхностей, учитывающие порядок расположения многоугольников. При использовании построчных алгоритмов, если передний многоугольник оказывается прозрачным, определяется ближайший из оставшихся, внутри которых находится строка сканирования. Суммарная закраска определяется следующим образом:

,

где – интенсивность для пикселя ближнего многоугольника;

– интенсивность для пикселя дальнего многоугольника;

k – характеризует прозрачность ближнего многоугольника. Лежит в пределах 0  k  1

Если k = 1, то он непрозрачен, если k = 0, то ближний многоугольник полностью прозрачен.

Прозрачность с учетом преломления света.

Законы преломления света следует учитывать при более реалистичном построении изображения прозрачных объектов. Согласно модели идеального преломления луч отклоняется на границе двух сред, причем падающий луч, преломленный луч и нормаль лежат в одной плоскости (в этой же плоскости лежит и зеркально отражен­ный луч). Обозначим угол между падающим лучом и нормалью как а1, а угол между нормалью и преломленным лучом как a2.

Для этих углов известен за­кон Снеллиуса, согласно которому: ,

где п1 и п2 абсолютные показатели преломления соответствующих сред. На рисунке изображен пример отклонения луча при преломлении. В данном случае границами раздела сред являются две параллельные плоскости, на­пример, при прохождении луча через толстое стекло.

Принято считать, что для вакуума абсолютный показатель преломления равен единице. Показатель преломления зависит от состояния вещества, например, от температуры. На практике обычно используют отношение показателей преломления двух сред (п1/n2), называемое относительным показателем преломления. Еще одним важным аспектом преломления является зависимость отклонения луча от длины волны. Это наблюдалось еще И. Ньютоном в опытах по раз­ложению белого света треугольной призмой. Чем меньше длина волны, тем больше отклоняется луч при преломлении. Благодаря этому свойству преломления мы и наблюдаем радугу. Фиолетовый (=0,4 мкм) луч отклоняется больше всего, а красный (=0,7 мкм) – меньше всего. Например, для стекла показатель преломления в видимом спектре изменяется от 1.53 до 1.51.

Таким образом, каждый прозрачный материал описывается показателем преломления, зависящим от длины волны. Кроме того, необходимо учитывать, какая часть световой энергии отражается, а какая часть проходит через объ­ект и описывается преломлением света.

Кроме идеального преломления в компьютерной графике (хотя и значитель­но реже, вследствие сложности реализации) используется диффузное пре­ломление. Согласно этой модели падающий луч преломляется во все стороны. Примером может служить молочное стекло, обледеневшее стекло.

Модели освещения

Источники света и их действие. Определим источник света как нечто, излучающее непосредственно гене­рируемый (а не только отражаемый) свет. Для описания источника необходимо описать излучение, исходящее от него в каждом направлении. Обычно излуче­ние, которое генерирует сам источник, рассматривают отдельно от отраженного излучения (это потому, что отраженный свет, в отличие от генерируемого света, зависит от среды). Полностью описывать излучение, которое исходит от источника в каждом направлении, нет необходимости. Привычнее считать, что источники дают по­стоянное излучение во всех направлениях (возможно, имеется некоторое число направлений с нулевым излучением, как, например, у прожектора). Соответ­ствующей величиной в этом случае будет светимость, определяемая как энергия излучения, которая генерируется за единицу времени единицей площади излучающей поверхности. Помимо описания светимости необходимо знать геометрию источника, силь­но влияющую на пространственное распределение света вокруг источника и на тени, которые отбрасывают объекты вблизи источника. Можно назвать две при­чины, по которым геометрия источников обычно принимается достаточно про­стой: во-первых, многие искусственные источники можно достаточно эффектив­но представить как точечные, линейные или плоские; во-вторых, даже источ­ники с простой геометрией могут производить удивительно сложные эффекты.

Точечные (всенаправленные) источники. В качестве обычного приближения часто принимается, что источник све­та – это очень маленькая сфера, фактически точка; такие источники называют точечными. Это естественная модель, поскольку многие источники физически малы по сравнению со средой, в которой они находятся. Модель действия то­чечного источника можно вывести, представив источник как очень маленькую сферу, каждая точка которой излучает свет, а светимость по всей поверхности сферы одинакова. Всенаправленный источник света из своей позиции иллюминирует все грани, ориентированные в его направлении. Поскольку всенаправленные источники света не сконструированы для отбрасывания теней, то их лучи не блокируются какими-либо элементами каркаса и, следовательно, уменьшают темноту любых теней, на которые они отбрасывают свет.

Основное назначение всенаправленных источников света служить в качестве заполняющего света. Весьма распространенный способ заключается в создании множества всенаправленных источников света на больших расстояниях, различных цветов и с низкими уровнями отбрасывания теней и смешивания их на модели. Подобная технология заимствована из театрального освещения. Благодаря своей всенаправленности источники света создают вполне предсказуемую результирующую иллюминацию.

Линейные источники. Геометрия линейного источника – это прямая линия; в качестве нагляд­ного примера можно привести флуоресцентную лампу. Линейные источники не очень распространены в природе или в модельной среде. Основной интерес эта модель представляет в задачах по радиометрии; в частности, диффузное отражение участков, расположенных в разумной близости от линейного источника, меняется как величина, обратная расстоянию до источника (а не квадрату расстояния).

Плоские источники. Плоскость, которая излучает свет. Плоские ис­точники очень важны по двум причинам. Во-первых, они достаточно часто встречаются в природе (хороший пример – пасмурное небо) и в искусственной среде (например, прямоугольные флуоресцентные лампы на потолках мно­гих предприятий). Во-вторых, исследование плоских источников позволяет объяснить различные эффекты затенения и взаимного отражения. Плоские ис­точники обычно представляют в виде участков поверхности, излучение которых не зависит от положения и направления, и описываются их светимостью. Как и для линейных источников, в данном случае можно доказать, что для точек, не слишком удаленных от источника, диффузное отражение, обуслов­ленное плоским источником, не зависит от расстояния до источника. Это про­исходит потому, что для достаточно большой (по сравнению с расстоянием до источника) поверхности, площадь, которую источник образует на какой-либо полусфере направлений, остается приблизительно той же, когда мы приближа­емся к источнику или удаляемся от него. Этим объясняется распространенность плоских источников в осветительной инженерии – они обычно дают достаточ­но однородное освещение.

Направленные источники света. Направленный источник света лучше всего сравнивать с солнцем. Когда свет отбрасывает тени, угол тени определяется линией, проведенной от источника света к объекту. Этот эффект наиболее заметен, когда имеются тесно расположенные объекты с параллельными поверхностями - например, частокол. Размещение точечного источника света рядом с частоколом приведет к появлению расширяющихся теней, поскольку каждый кол проводит собственную линию тени к источнику света. По мере удаления источника света от частокола угол между тенями каждого кола будет все меньше и меньше. Если источник света поместить на значительном удалении, то углы между тенями станут настолько малы, что отбрасываемые тени будут практически параллельными. Именно так получается с солнечным светом, а в компьютерной графике подобный эффект называется параллельным или направленным освещением.

Целевой источник света. Целевой точечный источник представляет собой направленный источник света, который светит в направлении своей цели. Цель может двигаться независимо. Целевой точечный источник света похож на ситуацию, когда к источнику света привязывают веревку, что часто используется на концертах. Если потянуть за веревку, свет поворачивается в заданном направлении. В отличие от всенаправленных источников света, направлением их света можно управлять. Целевые точечные источники могут отбрасывать тени, иметь прямоугольную или круглую форму и даже проектировать растровые изображения. Типичными примерами являются фары автомобиля, прожектор и пр.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]