
Элементы теории поля.
Теория поля – крупный раздел физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля.
К рассмотрению скалярных и векторных полей приводят многие задачи физики, электротехники, математики, механики и других технических дисциплин. Изучение одних физических полей способствует изучению и других. Так, например, силы всемирного тяготения, магнитные, электрические силы – все они изменяются обратно пропорционально квадрату расстояния от своего источника; диффузия в растворах происходит по законам, общим с распространением тепла в различных средах; вид силовых магнитных линий напоминает картину обтекания препятствий жидкостью и т.д.
Рассмотрим скалярные и векторные поля.
Скалярные поля.
Скалярным полем называется область пространства, если каждой точке М этой области соответствует определенное число U(М).
Другими словами: если в пространстве (х, y, z) имеется область D, в которой задана функция U=U(x,y,z), то говорят, что в обл. D задано скалярное поле.
Пример:
если U(x,y,z) – обозначает температуру в точке М, то говорят, что задано скалярное поле температур: в некоторой декартовой системе координат находиться неравномерно нагретое тело и температура его в каждой точке М(x,y,z) известна t˚=U(M). Тогда часть пространства, занятая телом, будет скалярным полем температур данного тела;
скалярное поле атмосферного давления, плотности (массы, воздуха), поле влажности;
скалярное поле солености воды (устье реки впадающей в море).
Векторное поле
Если каждой точке М области
пространства соответствует некоторый
вектор
,
то говорят, что задано векторное поле.
Векторным полем называется область пространства или плоскости, каждой точке которой М(x,y,z) поставлен в соответствие вектор .
,
где P(x,
y, z),
Q(x,
y, z)
и R(x,
y, z)
– некоторые функции.
Если поле задано на плоскости, то
Примерами векторных полей являются: поле силы тяжести; поле скоростей частиц текущей жидкости (ветра); магнитное поле; поле напряженностей заряженных объектов и т.д.
Векторное поле называется однородным,
если
- постоянный вектор, т.е. P,Q,R
– постоянные величины.
Таким полем является поле тяжести. Здесь . P=0, Q=0, R=-mg, g - ускорение силы тяжести, m – масса точки.
Векторной линией поля вектора называется такая линия, в каждой точке которой вектор поля направлен по касательной к этой линии.
Для определения уравнения векторных
линий поля
следует решить систему дифференциальных
уравнений
.
Для плоского поля
Пример: векторное поле задано вектором
.
Найти векторные линии, изобразить их
и на одной из них построить три вектора.
Решение: составляем дифференциальное
уравнение
.
Это уравнение с разделяющимися
переменными. Решаем его и находим
уравнения векторных линий.
Дадим константе С несколько различных числовых значений :
С=3
- эллипс (
,
b=3);
С=5
- эллипс (
,
b=5).
На линии построим три вектора
В
силовых полях векторные линии - это
силовые линии, в поле скоростей текущей
жидкости векторными линиями будут
линии, по которым движутся частицы
жидкости (линии тока), для магнитного
поля векторными линиями будут линии,
выходящие из северного полюса, и
оканчивающееся в южном.
Совокупность всех векторных линий поля, проходящих через некоторую замкнутую кривую, называются векторной трубкой.