Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Технологии оптического мультиплексирования.doc
Скачиваний:
11
Добавлен:
09.09.2019
Размер:
128 Кб
Скачать

Классификация wdm на основе канального плана

Схема расширенного канального плана позволяет предложить следующую схему классификации, учитывающую современные взгляды и тенденции выделять три типа мультиплексоров WDM:

  • обычные WDM (CDWM),

  • плотные WDM (DWDM),

  • высокоплотные WDM (HDWDM).

В настоящее время границы деления устройств условны. Однако, если руководствоваться указанным выше стандартом G.692 с его канальным планом, называемым также «волновым планом» или «частотным планом» то принято считать:

  • системами WDM – системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 16 каналов,

  • системами DWDM – системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 64 каналов,

  • системами HDWDM – системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.

Мультиплексоры dwdm

  • Мультиплексорам DWDM (в отличии от более традиционных WDM) присущи две отличительные черты:

  • использование только одного окна прозрачности 1550 нм, в пределах области усиления EDFA (1530-1560 нм);

  • малые расстояние между мультиплексными каналами,  3,2 / 1,6 / 0,8 или 0,4 нм.

Кроме этого, поскольку мультиплексоры DWDM рассчитаны на работу с большим числом каналов до 32 и более, то наряду с устройствами DWDM, в которых мультиплексируются (демультиплексируются) одновременно все каналы, допускаются также новые устройства, не имеющие аналогов в системах WDM и работающие в режиме добавления или вывода одного и более каналов в/из основного мультиплексного потока, представленного большим числом других каналов.

Так как выходные порты/полюса демультиплексора закреплены за определенными длинами волн, говорят, что такое устройство осуществляет пассивную маршрутизацию по длинам волн. Из-за малых расстояний между каналами и необходимости работы с большим числом каналов одновременно, изготовление мультиплексоров DWDM требует значительно большей точности по сравнению c WDM мультиплексорами (использующими обычно окна прозрачности 1310 нм, 1550 нм или дополнительно область длин волн в окрестности 1650 нм). Также важно обеспечить высокие характеристики по ближним (коэффициент направленности) и дальним (изоляция) переходных помех на полюсах DWDM устройства. Все это приводит к более высокой стоимости DWDM устройств по сравнению WDM.

DWDM мультиплексоры, являясь чисто пассивными устройствами, вносят большое затухание в сигнал. Например, потери для устройства, работающего в режиме демультиплексирования составляют 10-12 дБ, при дальних переходных помехах <-20 дБ, и полуширине спектра сигнал 1 нм, (по материалам Oki Electric Industry). Из-за больших потерь часто возникает необходимость установления оптического усилителя перед и/или после DWDM мультиплексора.

Оптические усилители

  Типы оптических усилителей

Оптические усилители, аналогично лазерам, используют принцип индуцированного излучения. Существует пять типов оптических усилителей, перечень которых приведён в табл.2.

Таблица 2. Типы и области применения оптических усилителей.

п/п

Типы усилителей

Область применения

1

Усилитель с полостью Фабри-Перо

Усиление одного канала (одной длины волны)

2

Усилители на волокне, использующие бриллюэновское рассеяние

Усиление одного канала

3

Усилители на волокне, использующие рамановское рассеяние

Усиление нескольких каналов одновременно

4

Полупроводниковые лазерные усилители

Усиление большого числа каналов в широкой области длин волн одновременно

5

Усилители на примесном волокне

Усиление большого числа каналов в широкой области длин волн одновременно

1.Усилители Фабри-Перо. Усилители на базе плоского резонатора с зеркальными полупрозрачными стенками. Усилители Фабри-Перо обеспечивают высокий коэффициент усиления (до 25 дБ) в очень узком (1,5 ГГц), но широко перестраиваемом (800 ГГц) спектральном диапазоне. Такие усилители не чувствительны к поляризации оптического сигнала и характеризуются сильным подавлением боковых составляющих (ослабление на 20 дБ за пределами интервала в 5 ГГц). В силу своих характеристик, усилители Фабри-Перо идеально подходят для работы в качестве демультиплексоров, поскольку они всегда могут быть перестроены для усиления только одной определённой длины волны одного канала из входного многоканального WDM .

2.Усилители на волокне, использующие бриллюэновское рассеяние. Стимулированное бриллюэновское рассеяние - это нелинейный эффект, возникающий в кварцевом волокне, в результате которого энергия оптической волны на частоте f1 переходит в энергию волны на смещённой частоте f2. Если накачка в волокне производится на частоте f1, стимулированное бриллюэновское рассеяние способно усиливать входной слабый сигнал на частоте f2. Выходной сигнал сосредоточен в узком диапазоне, что позволяет выбирать канал с погрешностью 1,5 ГГц.

3.Усилители на волокне, использующие рамановское рассеяние. Используют тот же нелинейный эффект, что и использующие бриллюэновское рассеянии, однако в данном случае частотный сдвиг между сигнальной волной и волной накачки (|f2- f1|), больше, а выходной спектральный диапазон усиления шире, что допускает усиление сразу нескольких каналов в WDM сигнале. Большие переходные помехи между усиливаемыми каналами представляют основную проблему при разработке таких усилителей.

4.Полупроводниковые лазерные усилители (ППЛУ). ППЛУ имеют ту же активную среду, что и п/п лазеры, но в них отсутствуют зеркальные резонаторы. Для уменьшения френелевского отражения с обеих сторон активной среды наносится специальное покрытие толщиной W с согласованным показателем преломления, рис. 3.

Рис. 3. П/п лазерный усилитель.

ППЛУ свойственны два существенных недостатка: Светоизлучающий активный слой имеет поперечный размер несколько микрон, а толщину в пределах одного микрона, что много меньше диаметра светонесущей части оптического волокна (~9 мкм - для одномодового волокна). Вследствие этого большая часть светового потока из входящего волокна не попадает в активную область, что уменьшает КПД усилителя. Увеличение КПД можно достичь, поставив между входящим волокном и активной средой линзу, но это приводит к усложнению конструкции. Второй недостаток имеет более тонкую природу. Коэффициент усиления ППЛУ зависит от направления поляризации и может отличаться на 4-8 дБ для двух ортогональных поляризаций. Это нежелательно, так как в стандартном одномодовом волокне поляризация распространяемого светового сигнала не контролируется и мощность светового потока данной поляризации может флуктуировать вдоль ППЛУ. Следовательно коэффициент усиления ППЛУ зависит от неконтролируемого фактора.

Приведённые недостатки минимизируются путем сопряжения ППЛУ с другими оптическими устройствами. Одна из возможностей - производство светоизлучающего лазерного диода, непосредственно на выходе которого устанавливается ППЛУ. На рис. 4 показана реализация ППЛУ в виде широкополосного усилителя. Несколько узкополосных п/п лазеров на различных длинах волн генерируют световые сигналы, которые мультиплексируются и размножаются с помощью оптического разветвителя. ППЛУ устанавливаются на конечном участке, чтобы усилить ослабленные после разветвления оптические мультиплексные сигналы.

Рис. 4. Источник мультиплексного излучения (п/п лазерный усилитель интегрирован с массивом лазерных светодиодов и оптическим разветвителем).

5.Усилители на примесном волокне.Данные усилители наиболее широко распространены и являются ключевыми элементами в технологии DWDM, так как позволяет усиливать световой сигнал в широком спектральном диапазоне.

Рис. 5. Оптический усилитель на примесном волокне.

Слабый входной оптический сигнал (1) проходит через оптический изолятор (2), который пропускает свет в прямом направлении - слева направо, но не пропускает рассеянный свет в обратном направлении, далее проходит через блок фильтров (3), которые блокируют световой поток на длине волны накачки, но прозрачны к длине волны сигнала. Затем сигнал попадает в катушку с волокном, легированным примесью из редкоземельных элементов (4). Длина такого участка волокна составляет несколько метров. Этот участок волокна подвергается сильному непрерывному излучению полупроводникового лазера накачки (5), установленного с противоположной стороны, с более короткой длиной волны. Излучение этого лазера (5) с длиной волны накачки (6) возбуждает атомы примесей, возбуждённое состояние которых имеют большое время релаксации, чтобы спонтанно перейти в основное состояние. Однако при наличии слабого сигнала происходит индуцированный переход атомов примесей из возбуждённого состояния в основное с излучением света на той же длине волны и стой же самой фазой, что и вызвавший этот переход сигнал. Селективный разветвитель (7) перенаправляет усиленный полезный сигнал (8) в выходное волокно (9). Дополнительный оптический изолятор на выходе (10) предотвращает попадание обратного рассеянного сигнала из выходного сегмента в активную область оптического усилителя. Активной средой является одномодовое волокно, сердцевина которого легирована примесями редкоземельных элементов с целью создания трёхуровневой атомной системы, рис. 6.

Рис. 6. Энергетическая диаграмма уровней атомной системы усилителя на примесном волокне.

Лазер накачки возбуждает электронную подсистему примесных атомов, в результате чего электроны с основного состояния (уровень А) переходят в возбуждённое состояние (уровень В). Далее происходит релаксация электронов с уровня В на промежуточный уровень С. Когда заселённость уровня С становится достаточно высокой, так что образуется инверсная заселённость уровней А и С, то такая система способна индуцировано усиливать входной оптический сигнал в определённом диапазоне длин волн. При отсутствии входного сигнала происходит спонтанное излучение возбуждённых атомов примесей, приводящее к шуму. Режимы работы усилителя во многом зависят от типа примесей и от диапазона длин волн, в пределах которого он должен усиливать сигнал. Наиболее широко распространены усилители, в которых используется кремниевое волокно, легированное эрбием. Такие усилители получили название EDFA. Межатомное взаимодействие является причиной очень важного положительного фактора - уширения уровней, что, в конечном итоге, обеспечивает усилителю широкую зону усиления сигнала. В EDFA наиболее широкая зона усиления от 1530 до 1560 нм, соответствующая переходу , достигается при оптимальной длине волны лазера накачки 980 нм. Усиление в другом окне прозрачности 1300 нм можно реализовать с использованием примесей празеодимия, однако такие оптические усилители не получили большого распространения. Коэффициент усиления сигнала зависит от его входной амплитуды и длины волны. При малых входных сигналах амплитуда выходного сигнала растёт линейно с ростом входного сигнала, коэффициент усиления достигает при этом своего максимального значения. Однако при некотором достаточно большом входном сигнале сигнал на выходе достигает своего насыщения, что приводит к падению коэффициента усиления при дальнейшем увеличении уровня входного сигнала.