Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 (1).doc
Скачиваний:
15
Добавлен:
08.09.2019
Размер:
591.36 Кб
Скачать

2. Логическая схема триггера. Использование триггеров в оперативной памяти Базовые понятия Триггер.

Входы для сброса и установки триггера, прямой и инверсный выходы.

Статическое (на триггерах) и динамическое (на базе конденсаторов) ОЗУ.

Обязательно изложить

Триггер — это электронная схема, которая может находиться в одном из двух устойчивых состояний; последним условно приписывают значения 0 и 1. При отсутствии входных сигналов триггер способен сохранять свое состояние сколь угодно долго. Таким образом, из определения следует, что триггер способен хранить ровно 1 бит информации.

Можно без преувеличения сказать, что триггер является одним из существенных узлов ЭВМ. Как правило, некоторое количество триггеров объединяют вместе, при этом полученное устройство называется регистром.

Рассмотрим логическое устройство триггера. На рисунке а приведена простейшая схема триггера, а на рисунке б показано его обозначение на схемах как единого функционального узла.

-Начнем с расшифровки обозначений входов и выходов. Триггер имеет два входа — S (от англ. Set — уста­новка) и R (Reset — сброс), которые используются соответственно для установки триггера в единичное и сброса в нулевое состояния. Вследствие таких обозначе­ний рассматриваемую схему назвали RS-триггером. Один из выходов, обозначенный на схеме Q, называется прямым, а противоположный выход — инверсным (это показывает черта над Q, которая в математической логике обозначает отрицание). За единичное состояние триггера договорились принимать такое, при котором

Q=i-

Обратимся теперь к рисунку а. Видно, что триггер состоит из двух одинаковых двухвходовых логических элементов ИЛИ-НЕ (ИЛИ обозначается символом 1 внутри элемента, а отрицание НЕ — небольшим кружочком на его выходе), соединенных определенным

БИЛЕТ № 13

1. Понятие алгоритма. Свойства алгоритма. Исполнители алгоритмов (назначение, среда, режим работы, система команд). Компьютер как формальный исполнитель алгоритмов (программ).

2. Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления.

3. Практическое задание. Решение простейшей оптимизационной задачи в среде электронных таблиц.

1. Понятие алгоритма. Свойства алгоритма. Исполнители алгоритмов (назначение, среда, режим работы, система команд). Компьютер как формальный исполнитель алгоритмов (программ)

Базовые понятия

Алгоритм — понятное и точное указание исполнителю совершить последовательность действий, направлен­ных на решение поставленной задачи.

Свойства алгоритма: дискретность, понятность, определенность, результативность, корректность, массовость.

Исполнитель — человек или автоматическое устройство, которое выполняет алгоритмы.

Система команд, режим работы исполнителя.

Обязательно изложить

Наша жизнь буквально насыщена алгоритмами. Вспомним кулинарные рецепты, инструкции к сложной бытовой технике, умножение "столбиком" и деление "уголком", перевод из десятичной системы в двоичную и множество других примеров.

Алгоритм — это правила, описывающие процесс преобразования исходных данных в требуемый результат. Чтобы произвольные правила действительно были алгоритмом, они должны обладать следующими свойствами.

Дискретность. Процесс решения задачи должен быть разбит на четкую последовательность отдельных шагов, каждый из которых принято называть командой.

Понятность. Каждая команда алгоритма должна быть понятна тому, кто исполняет алгоритм; в против­ном случае она (и, следовательно, весь алгоритм в це­лом) не может быть выполнена. В информатике часто говорят, что все команды алгоритма должны входить в систему команд исполнителя.

Определенность. Команды, образующие алгоритм, должны быть предельно четкими и однозначными, все возможности должны быть заранее предусмотрены и оговорены. Для заданных исходных данных результат не может зависеть от какой-либо дополнительной информации извне алгоритма.

Результативность. Правильный алгоритм не может обрываться безрезультатно из-за какого-либо не­преодолимого препятствия в ходе выполнения. Кроме того, любой алгоритм должен завершиться за конечное число шагов.

Корректность. Решение должно быть правильным для любых допустимых исходных данных.

Массовость. Алгоритм имеет смысл разрабатывать только в том случае, когда он будет применяться многократно для различных наборов исходных данных.

Исполнитель — фундаментальное понятие информатики. Оно входит в определение алгоритма.

Исполнители алгоритмов необычайно разнообразны. Исполнителем словесных инструкций (алгоритмов) является человек. Многие окружающие нас автоматические устройства тоже действуют в соответствии с определенными алгоритмами (выключающийся по достижении определенной температуры воды электрический чайник, турникет в метро, современная многопрограммная стиральная машина и многие другие). Компьютер тоже является исполнителем, возможности которого необычайно широки.

Каковы наиболее важные черты исполнителей?

Во-первых, состояние каждого исполнителя описывается определенными характеристиками. Полный набор характеристик, описывающий состояние исполнителя, и обстановка, в которой он действует, принято называть средой данного исполнителя.

Во-вторых, любой исполнитель имеет собственный строго определенный набор команд. В учебниках его обычно называют системой команд исполнителя, или сокращенно СКИ. Исполнитель не способен выполнить ни одной команды, которая не попадает в его СКИ, даже если введенная команда отличается от существующей всего лишь единственной неправильно написанной буквой.

Но и синтаксически правильная команда при некоторых условиях не может быть выполнена. Например, невозможно произвести деление, если делитель равен нулю, или нельзя осуществить команду движения вперед, когда робот уперся в стену. Отказ в подобной ситуации можно сформулировать как "не могу" (в отличие от "не понимаю" в случае синтаксической ошибки в записи команды). Следовательно, каждая команда в СКИ должна иметь четко оговоренные условия ее выполнения; все случаи аварийного прерывания команды из-за нарушения этих условий должны быть тщательно оговорены.

Третьей важной особенностью исполнителей является наличие различных режимов его работы; перечень режимов у каждого исполнителя, естественно, свой. Для большинства учебных исполнителей особо выделяют режимы непосредственного и программного управления1. В первом случае исполнитель ожидает команд от человека и каждую немедленно выполняет. Во втором исполнителю сначала задается полная последовательность команд (программа), а затем он исполняет ее в автоматическом режиме. Большинство исполнителей могут работать в обоих режимах.

И в заключение небольшое замечание по последней части вопроса. Если внимательно проанализировать свойства алгоритмов, то становится очевидным, что для выполнения алгоритма вовсе не требуется ею понимание, а правильный результат может быть получен путем формального и чисто механического следования алгоритму. Отсюда выте­кает очень важное практическое следствие: поскольку осознавать содержание алгоритма не требуется, его исполнение вполне можно доверить автомату или ЭВМ. Таким образом, составление алгоритма является обязательным этапом автоматизации любого процесса. Как только разработан алгоритм, машина может исполнять его лучше человека.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]