Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika.doc
Скачиваний:
9
Добавлен:
08.09.2019
Размер:
2.15 Mб
Скачать

19)Дія магнітного поля на струм; сила Ампера

Я

Рис. 4.12

к відмічалося вище, магнітне поле діє на вміщений у нього провідник зі струмом. Французький фізик Ампер встановив, що на елемент провідника зі струмом , вміщений в магнітне поле індукцією , діє сила (сила Ампера)

(4.22)

або в скалярній формі

, (4.23)

де α – кут між напрямками струму та магнітної індукції. Напрямок сили Ампера можна визначити за правилом лівої руки (рис. 4.12).

Сила, що діє на провідник зі струмом скінченої довжини, знаходиться з (4.22) або (4.23) інтегруванням по всій довжині провідника:

(4.24)

Зокрема, для прямолінійного провідника довжиною в однорідному магнітному полі

. (4.25)

Сила Лоренца. Рух електричних зарядів в магнітному полі

Досліди показують, що на електричний заряд, який рухається в магнітному полі, діє з боку поля сила (сила Лоренца), що напрямлена перпендикулярно до швидкості і пропорційна величині заряду і векторному добутку його швидкості та магнітної індукції: (4.27),або в скалярній формі , (4.28)де α – кут між і .

Д

Рис. 4.14

ля додатнього заряду напрямок сили Лоренца визначається за правилом лівої руки (рис.4.14), а для від’ємного заряду цей напрямок протилежний (рис.4.15).

Окремо відмітимо, що на нерухомий заряд магнітне поле не діє; в цьому його принципова відмінність від електростатичного поля. Якщо ж на заряд q діють одночасно і електричне, і магнітне поле, то результуюча сила (що також називається силою Лоренца) , (4.29)

де – напруженість електростатичного поля. Очевидно, що (4.27) є окремим випадком (4.29) у разі, коли електростатичне поле відсутнє.

Я

Рис. 4.15

кщо заряджена частинка рухається вздовж ліній магнітної індукції (або у протилежному напрямку), то або . Згідно з (4.28) у цьому випадку магнітне поле на частинку не діє, і вона рухається рівномірно і прямолінійно. Якщо ж швидкість частинки , то – максимальна. Оскільки перпендикулярна до швидкості, то вона надає частинці нормального прискорення; отже, частинка буде рухатися по колу в площині, перпендикулярній до напрямку магнітного поля. Згідно з 2-м законом Ньютона. ,звідки радіус кола , (4.30),а період обертання . (4.31)

20)Магнітний потік. Теорема Гауса для магнітного поля

Магнітним потоком через елементарну площадку називається фізична величина, що дорівнює скалярному добутку вектора магнітної індукції та площі площадки:

Рис. 4.17

, (4.33)

де – проекція на нормаль до площадки; – кут між векторами та (рис.4.17).

Якщо врахувати правила побудови ліній магнітної індукції (див. §4.1), то стає очевидним фізичний зміст магнітного потоку: він чисельно дорівнює кількості ліній магнітної індукції, що перетинають дану площадку. Магнітний потік через довільну поверхню знайдемо інтегруванням (4.33) по площі поверхні:

. (4.34)

Зокрема, для плоскої поверхні в однорідному магнітному полі . (4.35)

В СІ одиницею вимірювання магнітного потоку є Вебер: .

Магнітний потік може бути як додатнім, так і від’ємним, в залежності від знаку (визначається позитивним напрямком нормалі ). Теорема Гауса для магнітного поля: магнітний потік через будь-яку замкнену поверхню дорівнює нулю: .(4.36)Ця теорема є наслідком того, що в природі не існує «магнітних зарядів», лінії магнітної індукції не мають ні початку, ні кінця ,тому число ліній, що входять в довільну замкнену поверхню, дорівнює числу ліній, що виходять з неї.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]