Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 физика.docx
Скачиваний:
23
Добавлен:
31.08.2019
Размер:
2.61 Mб
Скачать

26. Диполь в электрическом поле. Момент сил, действующих на диполь в неоднородном поле.

Посмотрим, как ведет себя диполь, попав во внешнее электрическое поле. Сначала — в однородное поле с напряженностью (рис. 3).

рис 3

На заряды диполя действуют равные по модулю, но противоположные по направлению силы и , которые стремятся развернуть диполь. Относительно оси, проходящей через центр диполя (точку О) и перпендикулярной плоскости чертежа, каждая сила создает вращающий момент, равный произведению модуля силы на соответствующее плечо (см. рис. 3):

Суммарный вращающий момент будет равен

Таким образом, при заданных значениях Е и α вращающий момент М определяется величиной дипольного момента р.

Под действием вращающего момента диполь будет поворачиваться, пока не займет положение, изображенное на рисунке 3 штриховой линией. В этом положении равны нулю как сумма сил, так и сумма моментов сил, действующих на диполь. Это означает, что диполь находится в равновесии. При этом вектор электрического момента диполя сонаправлен с вектором напряженности поля. Следовательно, в однородном внешнем электрическом поле диполь поворачивается и располагается так, чтобы его дипольный момент был ориентирован по полю. Заметим, что такое положение является положением его устойчивого равновесия.

Пусть теперь диполь находится в неоднородном внешнем поле. Разумеется, и здесь возникает вращающий момент, разворачивающий диполь вдоль поля (рис. 4). Но в этом случае на заряды действуют неодинаковые но модулю силы, равнодействующая которых отлична от нуля. Поэтому диполь будет еще и перемещаться поступательно, втягиваясь в область более сильного поля (убедитесь в этом самостоятельно).

рис 4

Eсли диполь находится в неоднородном поле, он будет себя вести следующим образом: под действием вращающего момента сил М диполь будет стремиться установиться по полю, а под действием результирующей силы - переместиться в направлении более сильного поля.

Поток вектора напряженности

если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадку S, то поток вектора напряженности будет определяться формулой:

где En – произведение вектора на нормаль к данной площадке (рис. 2.5).

Рис. 2.5

Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности ФЕ через эту поверхность. В векторной форме можно записать – скалярное произведение двух векторов, где вектор .

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

Рассмотрим примеры, изображенные на рисунках 2.6 и 2.7.

Рис. 2.6 Рис. 2.7

Для рисунка 2.6 – поверхность А1 окружает положительный заряд и поток здесь направлен наружу, т.е. Поверхность А2 – окружает отрицательный заряд, здесь и направлен внутрь. Общий поток через поверхность А равен нулю. Для рисунка 2.7 – поток будет не равен нулю, если суммарный заряд внутри поверхности не равен нулю. Для этой конфигурации поток через поверхность А отрицательным. Таким образом, поток вектора напряженности зависит от заряда. В этом смысл теоремы Остроградского-Гаусса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]