- •43. Понятие функции распределения молекул по скоростям. Распределение Максвелла.
- •29. Явление на границе жидкости и твердого тела. Капилярные явления.
- •45. Барометрическая формула.Распределение Больцмана.
- •48. Закон Джоуля – Ленца в интегральной и дифференциальной формах.
- •6. Теорема Остроградского-Гаусса для напряженности электрического поля в вакууме.
- •19. Уравнение адиабаты для идеального газа
- •20.Взаимная электроемкость двух тел. Электроемкость уединенного проводника. Электроемкость плоского конденсатора.
- •4. Внутренняя энергия идеального газа. Теплоемкость идеального
- •37. Энтропия идеального газа. Изменение энтропии в различных процессах.
- •28. Применение теоремы Острвского-Гаусса
- •57. Адиабатический процесс. Ур-ние Пуассона
- •52.Емкость сферического и плоского конденсатора.
- •51. Закон теплопроводности и диффузии. Коэффициенты переноса энергии и массы в идеальном газе.
- •49. Приведённое количество теплоты. Понятие энтропии. Неравенство клаузиса.
- •50. Потенциальная энергия системы зарядов.
- •40. Правила Кирхгофа для расчета разветвленных электрических цепей.
- •26. Диполь в электрическом поле. Момент сил, действующих на диполь в неоднородном поле.
- •17. Основные понятия термодинамики.
- •18.Условия для напряженности электрического поля и электрического смещения на границе раздела между диэлектриком и проводником.
- •1. Основное уравнение молекулярно-кинетической теории идеального газа
- •13.Изотермы Ван-дер-Вальса и их сравнение с эксперименальными изотермами.
- •14. Электрическое смещение
- •39 Закон вязкого трения, теплопроводности и диффузии в газах
- •2Применение теоремы Остроградского-Гаусса для расчёта напряжённости электрических полей(поле и потенциал равномерно заряжённой сферы)
51. Закон теплопроводности и диффузии. Коэффициенты переноса энергии и массы в идеальном газе.
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где
— вектор плотности теплового потока —
количество энергии, проходящей в единицу
времени через единицу площади,
перпендикулярной каждой оси,
— коэффициент теплопроводности (иногда
называемый просто теплопроводностью),
—
температура. Минус в правой части
показывает, что тепловой поток направлен
противоположно вектору grad
T (то есть в сторону
скорейшего убывания температуры). Это
выражение известно как закон
теплопроводности Фурье.[1]
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где
— полная мощность тепловых потерь,
— площадь сечения параллелепипеда,
— перепад температур граней,
— длина параллелепипеда, то есть
расстояние между гранями.Коэффициент
теплопроводности измеряется в Вт/(м·K).
Закон Фика
С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии. При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ, обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала
В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:
которая
показывает, что плотность потока вещества
J [
]
пропорциональна коэффициенту диффузии
D [(
)]
и градиенту концентрации. Это уравнение
выражает первый закон Фика (Адольф Фик
— немецкий физиолог, установивший
законы диффузии в 1855 г.). Второй закон
Фика связывает пространственное и
временное изменения концентрации
(уравнение диффузии):
Коэффициент
диффузии D зависит от температуры.
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.
Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.
Перенос энергии в форме теплоты подчиняется закону Фурье:
(1)
где
jE — плотность теплового потока —
величина, определяемая энергией,
переносимой в форме теплоты в единицу
времени через единичную площадку,
перпендикулярную оси х, l — теплопроводность,
— градиент температуры, равный скорости
изменения температуры на единицу длины
х в направлении нормали к этой площадке.
Знак минус показывает, что при
теплопроводности энергия переносится
в направлении убывания температуры
(поэтому знаки jE и
– противоположны). Теплопроводность
l численно равна плотности теплового
потока при градиенте температуры, равном
единице.
Можно показать, что
(2)
где сV — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плотность газа, <v> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега.
Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.
Явление диффузии для химически однородного газа подчиняется закону Фука:
(3)
где jm — плотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D — диффузия (коэффициент диффузии), dr/dx — градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,
(4)
