Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология дыхания и прочее.doc
Скачиваний:
35
Добавлен:
28.08.2019
Размер:
252.42 Кб
Скачать

2. Физиология дыхания:

а) параметры вентиляции легких:

Минутный объем дыхания (МОД) - кол-во воздуха которое проходит через легкие за 1мин. МОД=ДО*ЧД=8л.

Минутная альвеолярная вентиляция легких (МАВЛ=(ДО-объем мертв.пространства)*ЧД).

Максимальная вентиляция легких — объем воздуха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений.

б) легочные объемы:

Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания. 300-800мл.

Резервный объем вдоха (РОвд) — макс. объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. РОвд = 1,5—1,8 л.

Резервный объем выдоха (РОвыд) — макс. объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. РОвыд=1,0—1,4 л.

Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. ОО=1,0—1,5 л.

в) Легочные емкости:

-Жизненная емкость легких (ЖЕЛ) - максимальный объем воздуха, который можно выдохнуть после макс. вдоха. ЖЁЛ=ДО+РОвд+РОвыд.

У мужчин = 3,5—5,0 л и более. Уженщин = 3,0—4,0 л.

-Емкость вдоха (Евд)=ДО+РОвд. Евд= 2,0—2,3 л.

-Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ=РОвыд+ОО= 1800-2500мл.

-Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ=ОО + ЖЕЛ, ОЕЛ=ФОЕ + Евд. у мужчин=6л, у женщин=5л.

г) методы исследования вентиляции легких:

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей, спирографиии.

3. Физиология дыхания:

а) физиологические основы газообмена в легких.

газообмен осуществляется за счет диффузии газов через аэрогематический барьер.

1 этап: перенос газов по концентрационному градиенту через аэрогематический барьер,

2 этап: связывание газов в крови легочных капилляров.

Закон Фика: Qгаза= S*ДК*дельтаP/ Т.

Qгаза - объем газа, проходящего через ткань в единицу времени.

S - площадь ткани,

ДК - диффузный коэфициент газа,

дельтаР - градиент парциального давления газа.

Т - толщина аэрогематического барьера.

Аэрогематический барьер: сурфактант - эпителий альвеол - интерстиция - эндотелий капилляров - плазма - эритроцит.

альвеола: рО2 = 40, рСО2=46;

венула: рО2 = 100, рСО2=40.

дельтаР О2 = 60, дельтаР СО2 = 6.

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоциировать.

б) транспорт О2 и СО2 кровью:

Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде.

Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином.

Нb с О2 образуют оксигемоглобин (НbО2). Гемоглобин переносит О2 от легких к тканям.

транспорт СО2

Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

в) Кислородная емкость крови - кол-во О2, которое связывается с кровью до насыщения Нb. 20-21мл на 100мл крови. 1 г Нb связывает 1,36—1,34 мл О2.

Анализ кривой диссоциации НbО2.

Зависимость степени оксигенации Нb от Рпарц. О2 в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина. Плато кривой диссоциации характерно для насыщенной О2 артериальной крови, а крутая нисходящая часть кривой — венозной крови в тканях.

Сродство Нb к О2 регулируется факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. сдвиг влево - легче идет насыщение О2: повышение рН, рО2, рСО2, понижение t, 2,3-ДФГ.

сдвиг вправо - легче идет отдача О2: понижение рН, рО2, рСО2, повышение 2,3-ДФГ, t.

г) физиологические основы газообмена между кровью и тканями.

Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст.) и тканями (около 40 мм рт.ст) равен в среднем 60 мм рт.ст.

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты начнут поступать из плазмы ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов снижается сродство Нb к О2.