Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опера́тор на́бла.docx
Скачиваний:
53
Добавлен:
28.08.2019
Размер:
553.21 Кб
Скачать

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом   (набла) (в ЮникодеU+2207, ∇). Для трёхмерного евклидова пространства в прямоугольных декартовых координатах[1] оператор набла определяется следующим образом:

,

где   — единичные векторы по осям xyz.

Через оператор набла естественным способом выражаются основные операции векторного анализаgrad (градиент), div(дивергенция), rot (ротор), а также оператор Лапласа (см. ниже). Широко употребляется в описанном смысле в физике и математике (хотя иногда графический символ   используется также для обозначения некоторых других, хотя в некотором отношении не совсем далеких от рассмотренного, математических объектов, например, ковариантной производной).

Под n-мерным оператором набла подразумевается вектор с компонентами   в n-мерном пространстве[2].

Иногда, особенно при начертании от руки, над оператором набла рисуют стрелку:   — чтобы подчеркнуть векторный характер оператора. Смысл такого начертания ничем не отличается от обычного  .

  • Иногда (особенно когда речь идет только о применении к скалярным функциям), оператор набла называют оператором градиента, каковым он в применении к скалярным функциям (полям) и является.

  • Замечание: в физике в наше время название оператор Гамильтона по отношению к оператору набла стараются не употреблять, особенно в квантовой физике, во избежание путаницы с квантовым гамильтонианом, имеющим, в отличие от классического, операторную природу.

[править]Свойства оператора набла

Этот вектор приобретает смысл в сочетании со скалярной или векторной функцией, к которой он применяется.

Если умножить вектор   на скаляр  , то получится вектор

,

который представляет собой градиент функции  .

Если вектор   скалярно умножить на вектор  , получится скаляр

,

то есть дивергенция вектора  .

Если   умножить на   векторно, то получится ротор вектора  :

  • Замечание: как и для обозначения скалярного и векторного произведения вообще, в случае их применения с оператором набла, наряду с использоваными выше, часто используются эквивалентные им альтернативные обозначения, так, например, вместо   нередко пишут  , а вместо   пишут  ; это касается и формул, приводимых ниже.

Соответственно, скалярное произведение   есть скалярный оператор, называемый оператором Лапласа. Последний обозначается также  . В декартовых координатах оператор Лапласа определяется следующим образом:

.

Поскольку оператор набла является дифференциальным оператором, то при преобразовании выражений необходимо учитывать как правила векторной алгебры, так и правила дифференцирования. Например:

То есть производная выражения, зависящего от двух полей, есть сумма выражений, в каждом из которых дифференцированию подвергается только одно поле.

Для удобства обозначения того, на какие поля действует набла, принято считать, что в произведении полей и операторов каждый оператор действует на выражение, стоящее справа от него, и не действует на всё, что стоит слева. Если требуется, чтобы оператор действовал на поле, стоящее слева, это поле каким-то образом отмечают, например, ставя над буквой стрелочку:

Такая форма записи обычно используется в промежуточных преобразованиях. Из-за её неудобства в окончательном ответе от стрелочек стараются избавиться.

[править]Операторы второго порядка

Так как существуют различные способы перемножения векторов и скаляров, с помощью оператора набла можно записать различные виды дифференцирования. Комбинирование скалярных и векторных произведений даёт 7 различных вариантов производных второго порядка:

Для достаточно гладких полей (дважды непрерывно дифференцируемых) эти операторы не независимы. Два из них всегда равны нулю:

Два всегда совпадают:

Три оставшихся связаны соотношением:

Еще одно может быть выражено через тензорное произведение векторов:

Градие́нт (от лат. gradiens, род. падеж gradientis — шагающий, растущий) — вектор, показывающий направление наискорейшего возрастания некоторой величины  , значение которой меняется от одной точки пространства к другой (скалярного поля). Например, если взять в качестве   высоту поверхности Земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма». Величина (модуль) вектора градиента равна скорости роста   в этом направлении.

Термин впервые появился в метеорологии, а в математику был введен Максвеллом в 1873 г. Обозначение grad тоже предложил Максвелл.

Определение

Для случая трёхмерного пространства градиентом называется векторная функция с компонентами  , где   — некоторая скалярная функция координат  .

Если   — функция   переменных  , то её градиентом называется  -мерный вектор

компоненты которого равны частным производным   по всем её аргументам.

Градиент обозначается   или, с использованием оператора набла,  .

Из определения градиента следует, что

Смысл градиента любой скалярной функции   в том, что его скалярное произведение с бесконечно малым вектором перемещения   дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена  , то есть линейную (в случае общего положения она же главная) часть изменения   при смещении на  . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат  , то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку   — это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

или, опуская по правилу Эйнштейна знак суммы,

(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.

[править]Пример

Например, градиент функции   будет представлять собой:

Дивергенция

[править]

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Дивергенция (значения).

Дивергенция (от лат. divergere — обнаруживать расхождение) — дифференциальный операторотображающий векторное поле наскалярное (то есть операция дифференцирования, в результате применения которой к векторному полю получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле» (точнее — насколько расходятся входящий и исходящий поток).

Если учесть, что потоку можно приписать алгебраический знак, то нет необходимости учитывать входящий и исходящий потоки по отдельности, всё будет автоматически учтено при суммировании с учетом знака. Поэтому можно дать более короткое определение дивергенции:

дивергенция — это линейный дифференциальный оператор на векторном поле, характеризующий поток данного поля через поверхность малой окрестности каждой внутренней точки области определения поля.

Оператор дивергенции, применённый к полю  , обозначают как

или

.

Определение

Определение дивергенции выглядит так:

где ФF — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю (то есть чтобы вся поверхность находилась в бесконечно малой окрестности данной точки, что нужно, чтобы дивергенция была локальной операцией и для чего очевидно недостаточно стремления к нулю площади поверхности и объема ее внутренности). В обоих случаях подразумевается, что

.

Это определение, в отличие от приводимого ниже, не привязано к определённым координатам, например, к декартовым, что может представлять дополнительное удобство в определённых случаях. (Например, если выбирать окрестность в форме куба илипараллелепипеда, легко получаются формулы для декартовых координат, приведённые в следующем параграфе).

Определение легко и прямо обобщается на любую размерность n пространства: при этом под объемом понимается n-мерный объем, а под площадью поверхности (n-1)-мерная площадь (гипер)поверхности соответствующей размерности.

[Править]Определение в декартовых координатах

Допустим, что векторное поле дифференцируемо в некоторой области. Тогда в трёхмерном декартовом пространстве дивергенция будет определяться выражением

Это же выражение можно записать с использованием оператора набла

Многомерная, а также двумерная и одномерная, дивергенция определяется в декартовых координатах в пространствах соответствующей размерности совершенно аналогично (в верхней формуле меняется лишь количество слагаемых, а нижняя остается той же, подразумевая оператор набла подходящей размерности).

[Править]Физическая интерпретация

С точки зрения физики (и в строгом смысле, и в смысле интуитивного физического образа математической операции) дивергенция векторного поля является показателем того, в какой степени данная точка пространства (или очень малая окрестность точки) является источником или стоком этого поля:

— точка поля является источником;

— точка поля является стоком;

— стоков и источников нет, либо они компенсируют друг друга.

Простым, хоть быть может и несколько схематическим, примером может служить озеро (для простоты — постоянной единичной глубины со всюду горизонтальной скоростью течения воды, не зависящей от глубины, давая, таким образом, двумерное векторное поле на двумерном пространстве). Если угодно иметь более реалистическую картину, то можно рассмотреть горизонтальную проекцию скорости, проинтегрированную по вертикальной пространственной координате, что даст ту же картину двумерного векторного поля на двумерном пространстве, причём картина качественно будет для наших целей не сильно отличаться от упрощённой первой, количественно же являться её обобщением (весьма реалистическим). В такой модели (и в первом, и во втором варианте) родники, бьющие из дна озера будут давать положительную дивергенцию поля скоростей течения, а подводные стоки (пещеры, куда вода утекает) — отрицательную дивергенцию.

Дивергенция вектора плотности тока дает минус скорость накопления заряда в электродинамике (так как заряд сохраняется, то есть не исчезает и не появляется, а может только переместиться через границы какого-то объёма, чтобы накопиться в нём или уйти из него; а если и возникают или исчезают где-то положительные и отрицательные заряды — то только в равных количествах). (См.Уравнение непрерывности).