
- •Глава 4. Дифференциальные уравнения движения смт и общие теоремы динамики смт
- •4.1. Дифференциальные уравнения движения смт
- •4.2. Теорема об изменении количества движения смт
- •4.3. Алгоритм решения задач с помощью теоремы об изменении количества движения смт – схема алгоритма д43 кдс с комментариями и примерами
- •Комментарии
- •Примечание
- •Пример 1
- •4.4. Теорема о движении центра масс смт
- •4.5. Алгоритм решения задач с помощью теоремы о движении центра масс смт – схема алгоритма д45 цмс с комментариями и примерами
- •Комментарии
- •Примечание
- •Пример 1
- •Пример 2
- •4.6. Теорема об изменении кинетического момента смт
- •Найдем кинетический момент нмс, вращающейся относительно неподвижной оси Оz (рис. 33)
- •4.7. Алгоритм решения задач с помощью теоремы об изменении кинетического момента смт – схема алгоритма д47 кмс с комментариями и примерами
- •Комментарии
- •Примечание
- •Осевые моменты инерции однородных пластинок и стержней массы m
- •Пример 1
- •Пример 2
- •Пример 3
- •4.8. Теорема об изменении кинетической энергии смт
- •4.8.1. Три формы теоремы
- •4.8.2. Кинетическая энергия нмс в частных случаях движения
- •4.8.3. Теорема Кенига
- •4.8.4. Работа произвольной системы сил, приложенной к смт
- •Пример 1
- •4.10. Потенциальное силовое поле
- •4.10.1. Потенциальное силовое поле и силовая функция мт
- •4.10.2. Потенциальная энергия мт
- •4.10.3. Примеры вычисления силовой функции и потенциальной энергии мт
- •Силовая функция линейной силы упругости определяется по формуле
- •4.10.4. Силовая функция и потенциальная энергия смт
- •4.10.5. Закон сохранения механической энергии мт
- •4.10.6. Закон сохранения механической энергии смт
4.10.6. Закон сохранения механической энергии смт
Теорема об изменении кинетической энергии СМТ (соотношение (4.34)) имеет вид:
T
– T0
=
.
Если СМТ движется в стационарном потенциальном силовом поле, то:
= П0 – П,
где П0 и П – потенциальные энергии внутренних и внешних сил, действующих на СМТ в начальный и произвольный моменты времени. Следовательно,
Т – Т0 = П0 – П или T + П = T0 + П0 = h,
где h – постоянная величина.
Обозначим через Е полную механическую энергию СМТ:
E = T + П = h. (4.57)
Закон сохранения механической энергии СМТ: полная механическая энергия при движении СМТ в стационарном потенциальном силовом поле внешних и внутренних сил является постоянной величиной – соотношение (4.57).
В случае НМС работа всех внутренних сил равна нулю и, следовательно, потенциальная энергия внутренних сил является постоянной величиной, которую можно считать равной нулю. Тогда в соотношении (4.57) за потенциальную энергию следует принять только потенциальную энергию внешних сил, которая вместе с кинетической энергией является постоянной величиной.
При движении МТ или СМТ в непотенциальном силовом поле, встречающемся в действительности, когда непотенциаль-ность связана с действием сил сопротивления, механическая энергия изменяется, причем она всегда уменьшается на работу сил сопротивления. Потерянная СМТ часть механической энер-гии обычно переходит в тепловую энергию. Полная энергия всех видов (механическая, тепловая, химическая и т. д.) не изменяется при движении МТ или СМТ в любом силовом поле. При этом происходит только преобразование одного вида энергии в другой.