
- •Зорина з.А., Полетаева и.И., Резникова ж.И. Основы этологии и генетике поведения
- •Глава I. Введение
- •Глава 2.
- •2.5.1. Исследования поведения животных в природе
- •2.5.2. Методы современной этологии. Краткий очерк
- •2.7.1. Первое экспериментальное доказательство наличия элементов мышления у антропоидов
- •2.7.2. Исследования мышления антропоидов в 30-40-е годы
- •2.7.3. Исследование зачатков мышления у животных-неприматов
- •2.7.4. Обучение антропоидов языкам-посредникам
- •Глава 3.
- •3.3.1. Поисковое поведение
- •3.3.2. Завершающий акт
- •3.3.3. Значение понятия о завершающем акте для изучения эволюции поведения
- •Глава 4.
- •Глава 5.
- •5.2.1. Одиночный образ жизни
- •5.2.2. Агрегации, или скопления
- •5.2.3. Анонимные сообщества
- •5.2.4. Индивидуализированные сообщества
- •5.3.1. Иерархия доминирования
- •5.3.2. Роль агрессии в поддержании структуры сообщества
- •5.3.3. Ритуалы и демонстрации
- •5.3.4. Сложные системы иерархии
- •5.3.5. Лабильность иерархической структуры в индивидуализированных сообществах
- •5.3.6. Доминирование и репродуктивный успех
- •5.3.7. Иерархия ролей и «разделение труда" в социальных группировках животных
- •5.3.8. Развитие социального поведения в онтогенезе
- •5.3.9. Влияние уровня развития элементарной рассудочной деятельности на специфику общественных отношений животных
- •5.4.1. Как работают сигналы
- •5.4.2. Язык животных и методы его изучения
- •5.4.3. Попытки прямой расшифровки языка животных
- •5.4.3.2. Язык восточно-африканских верветок. Еще один, ставший
- •5.4.4. Общение человека с животными с помощью языков-посредников
- •5.4.4.2. Обучение языкам-посредникам других животных и птиц.
- •5.4.5. Теоретико-информационный подход к исследованию языка животных
- •5.5.1. Грызуны
- •5.5.2. Хищные млекопитающие
- •5.5.3. Приматы
- •5.6.7. Типы сообществ беспозвоночных
- •5.6.2. Сравнительные исследования происхождения эусоциальн ости
- •5.6.3. Краткая характеристика сообществ эусоциальных насекомых
- •5.6.4. Роль индивидуума в функционировании сообщества эусоциальных насекомых: изоморфизм сложных форм поведения
- •Глава 6. Эволюция поведения
- •6.5.1. Социобиология
- •6.5.2. Проявления альтруизма и кооперации в сообществах
- •6.5.3. Заключительные замечания
- •Глава 7. Развитие поведения
- •7.3.1. Норма реакции и развитие поведения
- •7.3.2. Метод изолированного воспитания (депривационный эксперимент)
- •7.3.3. Формирование пения птиц
- •7.3.4. Возможности и ограничения депривационного эксперимента
- •7.5.1. Эмбриологические наблюдения куо
- •7.5.2. Развитие поведения птенцов в гнездовой период
- •7.5.3. Соотношение врожденного и приобретенного в формировании реакций млекопитающих
- •Глава 8. Генетика поведения
- •8.1.1. Задачи генетики поведения
- •8.2,1. Краткая история вопроса
- •8.2.2. Плейотропия
- •8.2.3. Изменчивость признаков поведения. Выбор признака для анализа
- •8.2.4. Использование инбредных линий в генетике поведения
- •8.2.5. "Изменчивость" фиксированных комплексов действий и микроэволюционные изменения поведения
- •8.2.6. Изменчивость поведения, связанная с различной экспрессивностью признаков
- •8.2.7. Причины и следствия
- •8.2.8. Влияние внешних условий на изменчивость признака. Материнский эффект
- •8.2.9. Некоторые экспериментальные стратегии при изучении генетического контроля нормального поведения
- •8.2.10. Проблема "генотип - среда"
- •8.3.1. Кишечная палочка
- •8.3.2. Инфузории
- •8.3.3. Нематоды
- •8.3.4. Аплизия
- •8.4.1. Медоносная пчела
- •8.4.2. Падальная муха
- •8.4.3.2. Мутации отдельных генов. Плейотропные эффекты. Пер-
- •8.4.3.4. Генетическое исследование разных форм двигательной
- •8.5.2. Генетический контроль общей схемы тела
- •8.5.3. Общие процессы развития и локальные нарушения структуры генома
- •8.5.3.2."Судьба" эмбриональных клеток и дифференцировка нейронов. Генетические мозаики и химеры. Различная "судь-
- •8.5.4. Нарушения развития мозга мыши. Неврологические мутации
- •8.6.1. Исследования генетики поведения собак
- •8.6.2. Краткий обзор генетических исследований поведения грызунов
- •8.6.3. Способность к обучению
- •8.6.3.3. Использование трансгенных мышей для исследования
- •8.6.4. Влияние одиночных генов на поведение
- •8.6.4.2. Влияние перестроек кариотипа на поведение мышей.
- •8.6.5. Патофизиологические признаки. Модели болезней человека
- •8.6.5.1. Судорожные состояния.
- •8.6.6. Количественные признаки в генетике поведения
- •8.6.7. Строение мозга и действие генов
- •8.6.7.2. Генетическая изменчивость площади прмрполя саз гип-
- •8.6.7.3. Генетический контроль размеров мозолистого тела. Ис-
- •8.6.8. Эволюционные преобразования мозга и поведения
- •Глава I. Введение
- •Глава 2. История изучения поведения животных
- •Глава 3. Классическая этология в трудах к. Лоренца и его школы
- •Глава 4. Классическая этология. Работы н. Тинбергена и его
- •Глава 5. Общественное поведение животных
- •Глава 7. Развитие поведения
- •Глава 8. Генетика поведения
8.6.3.3. Использование трансгенных мышей для исследования
роли генотипа в процессе обучения. Как уже упоминалось, в настоящее время разработаны экспериментальные приемы, с помощью которых в геном животного можно ввести последовательность оснований, кодирующую определенный белок. Этот ген может быть новым для вида или видоизмененным геном вида-хозяина. В последнем случае, как правило, речь идет о "выключении" какого-либо гена из процесса развития. Организм такого трансгенного животного (это как правило, мышь или дрозофила) развивается в новых условиях, когда данный ген не может экспрессироваться нормально.
Экспериментальные схемы обучения, которые используются для тестирования запоминания у лабораторных мышей и крыс, позволяют с большой надежностью разделить влияние какого-либо фактора на краткосрочную и долгосрочную память, а также на процесс собственно усвоения навыка. В основе такого навыка обычно лежит простая двигательная реакция или, наоборот, ее торможение (невыполнение). Усвоение подобного навыка происходит при единственном сочетании условного и безусловного раздражителей, что также важно для четкости оценки эффекта мутации.
Многочисленные данные об участии системы вторичных посредников в формировании следа памяти позволяют считать доказанным, что долговременная память связана с изменениями в структуре синаптических белков, причем эти изменения осуществляются в результате целого каскада событий, одним из которых является активация гена, кодирующего белок CREB. Для выяснения его роли в формировании памяти были получены мыши, у которых отсутствовал ген, кодирующий белок CREB (Bourchaladze et a]., 1994; см.: 8.4.3.6). В интервалах "работы" краткосрочной памяти (30 и 60 мин после сеанса обучения) запоминание навыка было достоверным, тогда как при тестировании в сроки, когда должна "работать" долгосрочная память (через 2 ч), воспроизведение навыка было сильно нарушено.
Было продемонстрировано также, что феномен долговременной потенциации, который многие рассматривают как гомолог условного рефлекса, формирующийся на уровне нейронных ансамблей гип-покампа, у мышей с отсутствием гена, кодирующего белок CREB, развивался аномально в тех же временных пределах. Через 2 ч после воздействия, вызывающего долговременную потенциацию в срезах мозга (гиппокампе) таких животных, все ее проявления уже отсутствуют.
Мыши с искусственной мутацией гена калмодулин-зависимой протеинкиназы II (Bach et al., 1995) нормально обучались навыку отыскания безопасного убежища при наличии сигнальных раздражителей, но не могли усвоить этот навык, когда для этого требовалось формирование пространственного представления. При этом у них наблюдалась еще одна особенность: при раздражении с частотой 5–10 в секунду (т.е. с частотой тета-ритма, как правило, присутствующего в электрограмме гиппокампа при исследовательском поведении) долговременной постсинаптической потенциации не было, в то время как при высокочастотном раздражении гиппокампа она развивалась нормально.
Таким образом, совокупность данных, полученных на животных разного уровня организации, позволяет в настоящее время считать, что экспрессия транскрипционного фактора CREB, который активирует гены, прямо связанные с формированием памяти, и ряд других генетических элементов, как правило, связанных с функцией системы вторичных посредников, являются важным этапом записи следа памяти в мозге.