Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радиолокационное распознавание.doc
Скачиваний:
115
Добавлен:
13.08.2019
Размер:
7.28 Mб
Скачать

4.3. Расчетные методы определения характеристик вторичного излучения

Интерес к таким методам возрастает вследствие удорожания натурных экспериментов, трудностей набора в ходе этих экспериментов необходимых данных и расхождения результатов, получаемых при этом различными экспери­ментальными методами.

4.3.1. Разновидности расчетных методов

Методика расчета характеристик вторичного излучения классифицируют: а) по методам описания поверхности аэродинамического объекта; б) по методам расчета рассеянного электромагнитного поля.

Среди методов описания поверхности выделяют:

1. Проволочные методы. Объект представляется совокупностью тонких проводников (проволочек) [80]. Метод применяется для расчета характеристик вторичного излучения в резонансной и рэлеевской областях.

2. Пластинчатые (фасеточные) методы. Поверхность цели описыва­ется путем задания граней (фасеток) и ребер. Зачастую этот процесс автоматизируется [81 - 83]. Размеры фасеток составляют доли длины волны, что приводит к росту вычислительных затрат для самолетов в сантиметровом – де­циметровом диапазонах длин волн.

3. Эллипсоидальные методы. В отличие от предыдущего метода, исполь­зуются участки эллипсоидов [84 – 86]. Снимаются ограничения на размеры элементарных участков поверхности, но не учитываются деполяризующие эф­фекты.

4. Методы, использующие описание кубическими сплайнфункциями. Позволяют автоматизировать трудоемкий процесс описания поверхности цели, используя стандартные пакеты программ САПР [87]. В остальном близки по характеристикам к эллипсоидальным методам.

5. Метод простейших компонентов. Сочетает широкий набор простых тел: поверхностей второго порядка, пластин, клиньев, тонких проводов, дисков и т.д. [109]. Позволяет уменьшить вычислительные затраты при сохранении точности расчетов, однако требует значительных ручных затрат при описании поверхности цели.

Расчет рассеянного электромагнитного поля некоторых простейших тел проводят на основе точных решений, полученных из уравнений Максвелла. Для объектов более сложной формы используют метод интегральных уравнений [80], численно реализуемый на ЭВМ. Однако этот точный метод из-за роста вычислительных затрат не применим в высокочастотной области когда длина волны значительно меньше характеристик размеров рассеивателя. Для самолетов - это наиболее важные сантиметровый и дециметровый диапазоны. В этих диапазонах для решения стационарных задач рассеивания (П/f  1) широко используют приближенные лучевые и токовые методы [57]. К лучевым методам относят методы геометрической оптики и геометрической теории дифракции [89 - 94], к токовым методам относят методы физической оптики параболического уравнения и краевых токов (физической теории дифракции) [89, 93, 95 - 104]. Для решения нестационарных задач рассеяния, т.е. когда отношение ширины спектра сигнала к центральной частоте близко к единице, также разработаны специальные высокочастотные методы [39, 48, 105 - 107].

Приближенные высокочастотные методы расчетов не дают удовлетворительных результатов для таких элементов воздушных объектов, как антенные отсеки, кабины, воздухозаборники и сопла двигателей. В то же время, на на­иболее важных носовых ракурсах эти элементы вносят основной вклад в от­раженный сигнал. Выходом из положения может являться сочетание: а) теоретических приближенных методов для расчета характеристик вторичного излучения элементов планера самолета (фюзеляж, крыло, хвостовое оперение, гондолы двигателей, подвесное оборудование); б) экспериментальных данных и полуэмпирических формул для расчета характеристик вторичного излучение антенных отсеков, кабин, воздухозаборников и сопел двигателей. Такой метод расчета можно назвать экспериментально-теоретическим.

Ниже приводится описание методики моделирования характеристик вторичного излучения воздушных объектов в сантиметровом и дециметровом диапазонах волн, обладающей следующими отличительными особенностями: а) для описания поверхности объекта используется метод простейших компонентов с наложением граничных условий: б) для расчетов характеристик вторичного излучения отдельных элементов объекта используется экспериментально-теоретический метод; в) расчет эффектов затенения и переотражений проводится по аналитическим формулам: г) для повышения точности моделирования па­раметры модели могут корректироваться на основе сопоставление с экспериментальными данными.

4.3.2 РАСЧЕТ ХАРАКТЕРИСТИК ВТОРИЧНОГО ИЗЛУЧЕНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ С

ПРОВОДЯЩЕЙ ПОВЕРХНОСТЬЮ НА САНТИМЕТРОВЫХ И ДЕЦИМЕТРОВЫХ РАДИОВОЛНАХ

Вектор комплексной огибающей радиолокационного сигнала находится по формуле

. (4.3)

Здесь - поляризационная матрица рассеяния i-го отражателя; - поляризационный вектор падающей волны; N - число освещенных отражателей; r° - единичный вектор падающего поля; комплексная огибающая сигнала на выходе устройства оптимальной обработки; - радиус-вектор фазового центра i-го отражателя; fо - несущая частота; с - скоро­сть света в свободном пространстве.

В процессе вычисления находят с помощью ЭВМ: а) векторы r0 для различных ориентации цели; б) число N блестящих элементов и их координаты с учетом эффектов затенения; в) вклад каждого элемента в сумму (4.3); г) сумму вкладов (4.3).

Рис. 4.1. Системы координат наземного локатора Озхуz, воздушной цели Оξηζ и i-й аппроксимирующей поверхности Оixiyizi

На рис. 4.1 показаны Озxyz и Оξηζ – системы координат наземного локатора и воздушной цели; β - азимут и ε- угол места целя в первой системе. Не показаны Ψ,Θ,γ – углы курса, тангажа и крена цели во второй системе. Вошедший в (4.3) единичный вектор r° имеет в первое системе составляющие cosεּcosβ, cosεּsinβ, sinε и определяется во второй системе выражениями

; ( 4.4)

(4.5)

Учет особенностей цели. Ее поверхность аппроксимируется на основе чертежа совокупностью участков поверхностей второго порядка Fi(ξ,η,ζ)=0. Объекту принадлежат лишь точки i-й поверхности (i= 1,2, ... , n), которые лежат внутри неких ограничивающих ее поверхностей , где k=1, 2, ... , Ki - номер (Ki – число поверхностей, ограничивающих i-ю поверхность).

Кромки крыльев, киля и стабилизатора задаются клиньями, параметры каждого из них - длина и угол в радианах (см. пункт 5 приложения 4).

Изломы на стыке поверхностей второго порядка аппроксимируются клиньями с изогнутыми ребрами. При этом задают радиус кривизны клина и его внешний раскрыв (см. пункт 5 приложения 4).

Положение воздухозаборников двигателей задают координатами центров входных отверстий. Учитываются параметры двигателей: форма поперечного сечения воздухозаборника, его глубина, число, форма и размеры лопаток компрессора. Кромки воздухозаборника аппроксимируют частями тора или тонкими клиньями (пункты 3, 4 приложения 4).

Координаты центров бортовых антенн и единичные векторы нормали к апертурам антенн описывают положение и ориентацию антенн в системе ко­ординат цели. Задаются параметры их раскрыва, рабочая длина волны, фокусное расстояние (для зеркальных антенн), параметры облучателя и некоторые другие характеристики.

Для поверхностей, покрытых радиопоглощающими материалами, задают толщину покрытия, комплексные относительные проницаемости материала, степень неоднородности покрытия, форму укрывае­мой поверхности или же экспериментальную зависимость коэффициента отражения от углов облучения и наблюдения.

Каждая поверхность второго порядка (ограничивающая в том числе) задается предварительно в своей местной (канонической) системе координат Оixiyizi параметрами уравнений Fi(xi,yi,zi)=0, .

Например, участок цилиндрической поверхности, заданной уравнени­ем Fi(xi,yi,zi)= . может ограничиваться парой плоскостей, перпендикулярных его оси, описываемых уравнением . В этих выражениях а, а1 и b, b1 – параметры поверхностей.

Рис. 4.2. Простейшая цель в виде сочленения, цилиндра (F1) с эллипсоидом (F2) и соответствующие ограничивающие пары плоскостей

Рис. 4.2 поясняет изложенное на примере простейшей цели в виде сочленения цилиндра с эллипсом. Блестящая точка на поверхности эллипсоида проверяется на ее местонахождение между парой ограничивающих плоскостей . Блестящая образующая на поверхности цилиндра проверяется на ее местонахождение между парой плоскостей .

Преобразование координат блестящей точки из местной системы координат в систему координат цели. Описывается выражением

(4.6)

Здесь Нi - матрица перехода от системы Оξηζ к системе Оixiyizi раз­мера 3х3; ξiηiζi - координаты точки Оi в системе Оξηζ . Пересчеты век­тора r° в местные системы координат проводятся согласно выражению ri=Hir°

Блестящие элементы при однопозиционной локации. Определяются точками стационарной фазы. Известно, что плоскость фронта волны является касательной к выпуклой поверхности F(х, у, z)= 0 в точке стационарной фа­зы. Иначе, единичный вектор r°, задающий нормаль к фронту волны, коллинеарен вектору grad F, откуда

(4.7)

где , , – направляющие косинусы, являющиеся проекциями на коорди­натные оси вектора r°.

Аналитические выражения для нахождения координат блестящих элементов различных поверхностей второго порядка сведены в приложение 2.

Проверка затенения. Луч, проведенный из блестящей точки (ξσ ησ ζσ) некоторой аппроксимирующей поверхности в направлении на РЛС, не должен пе­ресекать (по Ю.В.Сопельнику) ни один из ограниченных участков других апп­роксимирующих поверхностей. Чтобы удостовериться в этом, следует подста­вить в уравнение i-й (проверяемой) поверхности второго порядка выражения прямой ξ= ξσ -r°ξt, η= ησ -r°ηt, ζ= ζσ -r°ζt . Полученное квадратное урав­нение аt2 + bt + c = 0 решается относительно t.

. (4.8)

Здесь

(4.9)

где Рi матрица 3х3 коэффициентов канонического уравнения i-й поверхности. Если уравнение (4.8) имеет хотя бы одно действительное положительное реше­ние, то данная "блестящая" точка затенена.

Проверка затенения "блестящих" образующих и кромок производится диск­ретно с шагом Δl . Для плоской поверхности проверяется затенение центра каждой из элементарных площадок ΔSi, на которые она разбита.

Расчет поляризационных матриц элементарных излучателей при од­нопозиционной локации. Осуществляется в соответствии с выражением . Здесь диагональная поляризационная матрица 2х2 в соб­ственном поляризационном базисе i-го отражателя с диагональными элементами ; Ui - это матрица перехода от собственного поляризационного базиса i-го отражателя к поляризационному базису приемно-передающей антенны. Для линейно-поляризованной волны, падающей на пря­мую кромку, ее элементы равны U11i = U22i = cosφi, U21i = U22i = -sinφi, где φi – угол между вектором поляризации падающего поля и проекцией линии кромки на фронт волны. При вычислениях ЭП элементарных отражателей мож­но использовать формулы приложения 4, а также [74, 75, 99 - 101, 108 - 112].