
- •Введение
- •Формирование алфавитов классов и признаковых пространств радиолокационного распознавания
- •1.1. Общие сведения
- •1.2. Формирование алфавитов классов
- •1.3. Траекторные признаки
- •1.4. Сигнальные признаки однопозиционной активной локации при узкополосном зондировании
- •1.4.1. Эффективные площади (эп) целей
- •Примерные эффективные площади радиолокационных целей
- •1.4.2. Поляризационные признаки
- •1.4.3. Модуляционные признаки
- •1.5. Сигнальные признаки однопозиционной активной локации при широкополосном, многочастотном и многодиапазонном зондировании
- •1.5.1. Признаки при широкополосном зондировании
- •Скалярные признаки подклассов целей
- •Дальностно-поляризационные портреты (дпп)
- •О переходе от согласованного дальностного разрешения к сверхразрешению
- •Дальностно-частотные портреты (дчп)
- •Дальностно-угловые портреты (дул)
- •1.5.2. Признаки при многочастотном зондировании
- •Признаки при когерентном зондировании сигналами малой протяженности
- •Признаки при когерентном зондировании сигналами большой протяженности.
- •Признаки при некогерентном многочастотном зондировании
- •1.3.3. Признаки при многодиапазонном зондировании
- •1.6. Сигнальные признаки однопозиционной пассивной локации
- •1.7. Сигнальные признаки многопозиционной активно-пассивной локации
- •1.8. Признаковые пространства распознавания
- •1.9. Эффективность радиолокационного распознавания
- •2. Алгоритмы распознавания по совокупности признаков
- •2.1. Общие сведения
- •2.2. Байесовские одноэтапные алгоритмы распознавания
- •2.2.1. Исходные структуры алгоритмов
- •При этом отношение
- •2.2.2. Мультипликативные байесовские алгоритмы и их частичная
- •2.2.3 Аддитивные частично параметризованные байесовские алгоритмы
- •2.2.4. Примеры элементов байесовских алгоритмов
- •Элементы алгоритмов, связанные с измерением эффективных площадей целей
- •Элементы алгоритмов связанные с получением дальностных портретов целей
- •2.3. Непараметрические алгоритмы многоальтернативного распознавания
- •2.3.1. Алгоритмы вычисления расстояний
- •2.3.2. Алгоритмы голосования
- •2.4. Нейрокомпьютерные алгоритмы
- •2.4.1. Принципы построения и структуры и ейро компьютерных алгоритмов
- •2.4.2. Варианты алгоритмов функционирования и обучения
- •2.4.3. Нейробайесовские алгоритмы
- •2.4.4. Некоторые данные моделирования
- •3. Принципы реализации высокого разрешения по дальности и по угловой координате в одпопозиционных системах радиолокационного распознавания
- •3.1. Общие сведения
- •3.2. Возможности и примеры получения дальностных портретов
- •3.2.1. Методы когерентной обработки сигналов
- •3.2.2. Примеры когерентной обработки сигналов
- •3.3. Принципы реализации высокого разрешения за счет прямого синтеза апертуры
- •3.4. Пример синтеза апертуры на спутнике "Сисат", сша, 1978 [41]
- •3.5. Обратный (инверсный) синтез апертуры и формирование дальностно-угловых портретов
- •3.6. Варианты адаптации к случайным параметрам сигналов
- •3.7. Адаптация к неравномерному движению цели без угловых рысканий
- •3.8. Принципы адаптации к рысканиям цели
- •3.8.1. Применение методов углового сверхразрешения
- •3.8.2. Сочетание когерентной обработки с некогерентной
- •3.8.3. Компенсация амплитудно-фазовых флюктуаций, обусловленных
- •4. Экспериментальные и расчетные методы определения характеристик вторичного излучения и показателей качества радиолокационного распознавания
- •4.1. Общие сведения
- •4.2. Экспериментальные методы определения характеристик вторичного излучения
- •4.2.1. Методы натурных измерений
- •4.2.2. Методы масштабного электродинамического моделирования
- •4.2.3. Методы гидроакустического моделирования
- •4.3. Расчетные методы определения характеристик вторичного излучения
- •4.3.1. Разновидности расчетных методов
- •4.3.3. Динамические цифровые модели вторичного излучения
- •Варианты построения динамических моделей
- •4.4. Методы определения показателей качества радиолокационного распознавания
- •4.4.1. Натурные методы
- •4.4.2. Методы физического моделирования
- •4.4.3. Методы математического моделирования
- •4.4. Примеры математического моделирования распознавания воздушных целей по совокупности признаков
2.3.2. Алгоритмы голосования
Относятся
к многоэтапным алгоритмам принятия
решений. На первом этапе независимо
принимаются предварительные
многоальтернативные
решения по отдельным признакам или
группам признаков
.
В роли решений по группам признаков
могут выступать решения различных
источников информации (РЛС). На втором
этапе решения объединяются по взвешенному
(с учетом достоверности) или по простому
большинству голосов [2, 6, 20, 60].
Алгоритм извещенного голосования. Имеет вид
.
(2.28)
Структура
алгоритма (2.28) аналогична структуре
байесовского алгоритма (2.13) - (2.14), но
упрощена по сравнению с ним. Реализации
измеряемых параметров
и принимаемые реализации
,
имеющие непрерывный закон распределения,
заменены реализациями предварительных
решений в виде случайных чисел kv,
имеющими дискретный закон распределения.
Условные плотности вероятности
и отношения правдоподобия
заменены поэтому на вероятности
,
Упрощение касается также использования
в (2.15) простых стоимостей решений ri
=r
когда сопоставление по ним теряет
смысл.
Предполагается,
что МхМ
матрицы условных вероятностей решений
по каждому признаку v
заранее
установлены путем моделирования
натурного эксперимента или расчета.
Матрица соответствующих логарифмов
введена в долговременную память ЭВМ.
При эффективных признаках распознавания
диагональные элементы матриц заметно
больше недиагональных. После получения
каждого предварительного решения
в
оперативную память пересылается из
долговременной kv
-й столбец соответствующей v-й
матрицы,
который и используется для принятия
окончательного решения (2.28).
Алгоритм
простого голосования.
Отличается от предыдущего заменой М
различающихся матриц
на одинаковые и более простые единичные
матрицы
.
Иначе все наибольшие диагональные
элементы заменены единицами, а все
меньшие, недиагональные элементы -
нулями. Пренебрегают, кроме того,
возможным неравенством доопытных
вероятностей различных классов Pi.
Алгоритм сводится к подсчету и выявлению
максимума голосов "за" по отдельным
признакам (группам признаков) v:
.
(2.29)
Алгоритм (2.29) не предусматривает введения и оценивания параметров каких-либо распределений и является полностью непараметрическим, в отличие от (2.28), в который входили еще параметры Рi и . Однако определенный произвол построения алгоритма (2.29) и даже алгоритма (2.28) не может не сказаться на качестве распознавания.
Небезынтересно, что алгоритм простого голосования можно свести к одному из алгоритмов минимума расстояний, а именно, к алгоритму минимума расстояний Хемминга. Для этого достаточно представить (2.29) в виде
(2.30)
где вместо подсчета и выявления максимума числа голосов "за" подсчитывается и минимизируется число голосов "против". Входящую и (2.30) сумму называют расстоянием Хэмминга в дискретизированном пространстве параметров (признаков) от принятой реализации до произвольной реализации i.
Алгоритмы "вычисления оценок" (АВО). Составляют класс алгоритмов, предложенный в 1971 г. Ю.И. Журавлевым [9, 50] для распознавания классов объектов по большому числу признаков с небольшими выделительными затратами. Окончательное решение принимается по большинству голосов ("оценок"), полученных при выявлении сходства отдельных групп признаков классифицируемого объекта с аналогичными группами признаков конкретных объектов каждого класса. Сходство выявляется на основе промежуточных голосований "да", "нет" без права или с правом воздерживаться. После каждого из промежуточных голосований предусматриваются пороговые процедуры. Итоговое голосование по всем объектам каждого класса и всем группам признаков - взвешенное, с возможной дополнительной пороговой процедурой, например, для разности максимального и наибольшего из конкурирующих с ним числа голосов.
Более поздний "алгебраический подход" Ю.И. Журавлева предусматривает составление улучшенных алгоритмов из менее совершенных по правилам некоторой алгебры [18, 51].